スピントロニクスと材料

佐藤勝昭

国立研究開発法人 科学技術振興機構

(102-8666 東京都千代田区四番町 5-1 サイエンスプラザ)

1. スピントロニクスとは何か1

電子のもつ2つの性質である電荷とスピンの両者を利用するエレクトロニクスの分野を「スピントロ ニクス」と呼ぶ。スピンと電子輸送を結びつける研究は 1950 年代から行われていた。強磁性体の異方 性磁気抵抗効果、異常ホール効果、キュリー温度付近のスピン無秩序散乱などがその例である。しかし、 当時の技術では、人工的に材料を作ってスピン依存輸送を制御するということはできなかった。スピン と電子輸送の相互作用を積極的に制御しようという試みは 1960 年代に始まった。さらにナノテクノロ ジーが進展して初めて、スピントロニクス研究が本格化した。以下、その歩みを振り返ってみる。

磁性半導体2

スピントロニクスの草分けは 1960 年代に始まった磁性半導体の研究である。スピネル系カルコゲナ イド(CdCr₂Se₄など)やユーロピウムカルコゲナイド系(EuS など)に代表される第1世代の磁性半導体が 示す局在スピンと伝導電子スピンの相互作用による「負の磁気抵抗効果」や「光学吸収端の磁気的赤色 移行」が話題を集めたが、キュリー温度の低さと、試料作製の困難さから実用的なデバイスには繋がら なかった。その後、1980 年代になると、第2世代の磁性半導体として Cd₁_xMn_xTe が注目 Mn サイトに 束縛された磁気ポーラロンのイメージが提案される。この物質は、光学吸収端付近に大きな磁気光学効 果を示すため、光アイソレータ材料として研究された。さらに 1990 年代になり、In₁_xMn_xAs, Ga₁_xMn_xAs など Mn 添加の III-V 族磁性半導体が関心を集め、磁性の電気的制御など多くの興味深い 基礎研究が行われた。強磁性の起源について遍歴電子が局在スピンをそろえて回る RKKY 型の相互作 用が提唱されたが、最近の研究では、不純物準位が関与したハーフメタルとしての解釈が主流になりつ つある。キュリー温度の低さや、低温成長に起因する結晶性の悪さが実用を阻んでいる。2000 年にな り、CdGeP₂:Mn, ZnSiAs₂:Mn, TiO₂:Co, ZnCrTe などいくつかの室温強磁性半導体が見出されたが、基 礎研究の段階にとどまっている。

スピン FET³

1990年代に、半導体ヘテロ構造界面における2次元電子ガスを用いたスピンFETが提案された。ここでは、強磁性金属電極からのスピン注入、ラシュバ効果を用いたスピン軌道相互作用のゲート電界制 御などの新しい概念が持ち込まれた。各要素技術の基礎研究は進んだが、提案通りのスピンFETは実現していない。

GMR, TMR の登場

スピントロニクスのイノベーションは、1988 年 Fert ら4, Grünberg ら5の磁性金属/非磁性金属ハイブ リッド構造における巨大磁気抵抗効果(GMR) によって開かれた。数年のうちに GMR は、IBM のグル ープ6によりスピンバルブとしてハードディスクの高密度化に貢献した。これにより、人類はコイルを用 いずに効率よく磁気情報を電気信号に変換する手段を得たのである。

引き続き、Miyazaki らにより室温におけるトンネル磁気抵抗効果(TMR)が見出され⁷、新たな不揮発 性メモリ素子 MRAM を生むきっかけとなる。 さらに、TMR は、MgO をトンネル障壁に採用する Yuasa ら⁸および Parkin⁹らの研究によって大幅 な改善が得られ大きく進展した。MgO バリア TMR 素子は HDD の磁気ヘッド用のセンサーのほとんど に使われている。

スピン移行トルク(STT)

これに次ぐ革新的展開は、スピン移行トルク(STT)を用いた磁化反転現象の理論的予言^{10,11}と実験的検 証¹²によりもたらされた。スピンの角運動量を強磁性電極に受け渡す現象を直接利用する STT-MRAM は、磁界発生用の電流線が不要であるため、DRAM をしのぐ高密度集積も可能となり、ついにサンプ ル出荷にまで至った。ついに人類は、コイルなしに電気信号を磁気情報へ変換する道を手にしたのであ る。STT はさらにスピントルク発振子(STO)という超小型発振子や、スピントルクダイオード(STD)な ど、高周波スピントロニクスの分野を切り開いた。純粋スピン流の輸送はエネルギー散逸を伴わないが、 STT では電流を流すのでジュール熱の発生を免れない。電流の代わりに電圧を用いて磁気を制御する道 もひらかれつつある。

スピン流13

これまで、スピンの流れは電荷の流れに付随するものであったが、電荷の流れを伴わない純粋のスピン流の存在が理論予測され、ここ 10 年ほどの間に実験的に検証された。純粋スピン流を用いれば、ジュール熱を伴わずに情報を伝送できるので、集積回路の高密度化・微細化による金属配線によるエネル ギー散逸の問題を解決できるものと期待されている。

スピン流の発生と検出には、スピンホール効果、逆スピンホール効果の理論と実験的検証が大きく寄 与した。さらには、熱スピン流によるスピンゼーベック効果の発見、磁性絶縁体におけるスピン波の運 ぶスピン流、さらには、スピン波とフォノンの相互作用、トポロジカル絶縁体など、スピントロニクス のベースとなる学理は大きく飛躍しつつある。

2. スピントロニクスの物理と材料

巨大磁気抵抗素子

Fert, Grünberg らが見出した巨大磁気 抵抗効果(GMR)は、強磁性体極(F)/非磁性 体(N)/強磁性体(F)の構造をもち、強磁性 電極材料としては Fe、非磁性材料として は Cr が使われた。図は電流が面内を流れ

る CIP (current-in-plane)-GMR の原理で

ある。F 層同士の磁化が平行なら多数スピン電子は散乱を受けず、 少数スピン電子のみ散乱され低抵抗である。隣り合うF層の磁化が 反平行だと両スピンの電子とも散乱を受けるので高抵抗である。

その後、IBM で開発された GMR を用いたスピンバルブ素子は、 図 2 のようにフリー層/非磁性層/ピン止め層からなっている。ピン止 めのためには、反強磁性体との交換結合が使われた。

図2スピンバルブの仕組み

強磁性体としては、当初パーマロイ FeNi が使われ、その後、磁 化の最も大きいとされる合金 CoFe が用いられる。非磁性体として

は Cu が使われる。また、交換結合のための反強磁性層として Ru を強磁性体で挟んだ CoFe/Ru/CoFe という合成反強磁性構造(SAF)が使われる。

図1 CIP-GMR の原理

トンネル磁気抵抗素子

磁性と伝導の関係にさらなるブレークスルーを もたらしたのは、Miyazaki による 1995 年の磁気ト ンネル接合(MTJ)における室温でのトンネル磁気抵 抗効果(TMR)の発見で、MR 比は 18%に及んだ。

TMR は図3に示すように強磁性体のバンド構造 を使って説明される。フェルミ面における状態密度 が上向きスピンと下向きスピンとで異なる。両電極 のスピンが平行だと状態密度の大きな状態間の電 子移動により低抵抗になる。一方、反平行では状態 密度の大きな状態と小さな状態の間の移動のため 高抵抗になる。

MgO バリア TMR 素子

Miyazaki の素子は、トンネル障壁として Al を酸 化して得られるアモルファス Al₂O₃ が使われた。 2004年、TMR は革命的なブレークスルーを迎える。 Yuasa らはそれまで用いられてきた Al₂O₃ に代えて MgO 単結晶層をトンネル障壁に用いることで、200% におよぶ大きな TMR 比を実現した。その後も TMR は図 4 のように伸び続け、最近では 600%に達した。

Fe/MgO/Fe 構造において、1000%におよぶ TMR が理論的に予測され、これを受けて多くの研究機関 が挑戦したが、成功しなかった。Yuasa らは、JST さきがけの研究者として Fe(001)/MgO(001)/Fe(001) のエピタキシャル成長に取り組み、トンネル層の乱

図 3 TMR の原理

れがほとんどない構造を得た。また、界面での Fe 酸化層も見られていない。結晶性のよい MgO の成 膜技術の確立があって初めてブレークスルーが得られた。まさに結晶工学の成果と言えるだろう。

その後、キャノンアネルバの研究者との共同研究で、 CoFeB/MgO/CoFeB構造を用いて量産に成功、現在すべてのHDD読み取りヘッドにこの技術が使われている。

超高密度 HDD ヘッド用 CPP-GMR ヘッド

2Tb/in²を超える次世代高密度 HDD 用の磁気読み取りヘ ッドには、図 5 に示すように、MR 比が高く、かつ 01 Ω以 下の低抵抗をもつ材料が要求される。この目的にかなう素子 として、CPP (current- perpendicular-to-plane)-GMR が研 究されている。CPP-GMR 素子とは、電流を層に垂直に流 す配置での巨大磁気抵抗素子である。

められる特性

図 6 CIP と CPP の比較

図 6 に示すように、CIP 素子では、電流を流す距離が数µm であるのに対し、CPP 素子の電流パスの 長さは数 10nm に過ぎず、抵抗が 1/100 になる。 しかし、従来材料では、MR 比が小さく要求される 特性を満たさない。MR 比は対向する 2 つの強磁性 電極のスピン偏極率の積に比例するので、高い MR 比を得るには強磁性体のスピン偏極率が高くなけ ればならない。

高いスピン偏極率を目指すハーフメタル

高いスピン偏極率を持つ材料としてハーフメタ ルが研究されている。ハーフメタルにおいては、図 7の状態密度に示すように、一方のスピンバンドに フェルミ面が存在し、もう一方のスピンバンドにフ ェルミ準位付近にバンドギャップが存在する。この ため、理想的には100%のスピン偏極率が生じる。

ハーフメタルとしては、 CrO_2 , Fe_3O_4 , LSMO, ハーフホイスラー合金 NiMnSb などが知られて いるが、GMR の電極として最もよく研究されて いるのが Co_2FeAl などのフルホイスラー合金で ある。この合金の結晶構造は、本来、図 8 の $L2_1$ のように、 $X(=Co \ a$ ど)、 $Y(=Fe, Mn \ a$ ど)、 $Z(=Al, Si \ a$ ど)の 3 つの副格子が規則正しく構 造を作っているが、B2 のように Y と Z の規則 が崩れたり、場合によっては A2 のように X,Y,Z の秩序がなくなったりする。ハーフメタルにな るのは、L21 または B2 のみである。

ホイスラー合金を TMR 電極として用いる多

100%スピン偏極 ハーフメタル 通常の強磁性体 ハーフメタル強磁性体 ホイスラー合金 Co2FeAloSios Density of states Density of stat フェルミレベル近傍 アップスピン:s-like 1983年 ハーフホイスラー合金NiMnSb ダウンスピン:状態無し において理論的に予言 л 高いスピン分極率 CrO₂, LaSrMnO, Co₂MnSiの低温での 理想的には、P=1 ハーフメタル性が実験的に示されている.

図7 ハーフメタルとホイスラー合金

図8ホイスラー合金の結晶構造

図 9 ホイスラー合金の TMR

くの試みが行われた。図9に示すように実際に高いTMR が得られるようになったのは、精密な結晶構 造制御が行われるようになった 2006 年頃からである。今では MgO 絶縁層を用いて 1000%を超える TMR が報告されている。

MRAM

MRAM(magnetic random access memory)とは、記憶素子に磁性体を用いた不揮発性メモリの一種である。TMR素子を用いた磁気トンネル接合(MTJ)と半導体 CMOS が組み合わされた構造となっている。

直交する2つの書き込み線に電流を流し、得られた磁界が反転磁界 H_Kを超えると、磁気状態を書き換えることができる。MRAM は、ア ドレスアクセスタイムが10ns 台、サイクルタイムが20ns 台とDRAM の5倍程度でSRAM 並み高速な読み書きが可能である。また、フラッ シュメモリの10分の1程度の低消費電力、高集積性が可能などの長 所があり、SRAM(高速アクセス性)、DRAM(高集積性)、フラッシュ

図 10 MRAM の模式図

メモリ(不揮発性)のすべての機能をカバーする「ユニバーサルメモリ」としての応用が期待されている。 しかし、電流で磁界を発生している限りは高集積化が難しいという欠点がある。この問題を解決した のが次項に述べるスピン移行トルク(STT)である。

スピン移行トルク(STT)

1996 年、新たなスピントロニクスの分野としてスピン注入磁化反 転のアイデアが Slonczewski および Berger らによって提案され、実 験的に検証された。図 11 に示すように、強磁性電極 FM1 からスピ ン偏極した電流を、傾いた磁化をもつ対極強磁性電極 FM2 に注入す ると、注入された電子のスピンが FM2 の向きに傾けられるときの反 作用として、スピン角のトルクが対極電極の磁化に移行して、それが きっかけで磁化反転をもたらすのである。

スピン注入磁化反転を実現するための素子は図 12(a)のような非常 に小さな断面(60nm×130nm)を持つ柱状の CPP-GMR 構造である 。 この素子の電気抵抗の磁界依存性が図 12(c)に示されている。二つの Co層の磁化が平行(P)であるか反平行(AP)であるかに応じて明 瞭な抵抗変化が得られている。図 12(d)は外部磁界をゼロにして、電 流を変化させたとき、電気抵抗が電流によって変化する様子を示して いる。+2mA程度で磁化が平行配置から反平行配置にスイッチする様 子が電気抵抗ジャンプとして現れている。この状態は電流をゼロにし ても安定であり、-4mA程度で再び平行配置へ戻る。正の電流で反平 行配置を、負の電流で平行配置を実現できる¹⁴。

開発当初は 10⁸A/cm² という大電流密度を必要としたので実用は無 理であろうと言われたが、現在では CoFeB/MgO/CoFeB **垂直磁化**の

図 11 STT の原理図

図 12 スピン注入磁化反転

TMR 素子を用いて実用可能な電流密度 3.8MA/cm²にまで低減することができるようになった ¹⁵。 従来の MRAM においては、電流が作る磁界を使って磁化反転を誘起して記録するので、微細化する と電流密度が増加し、電力消費が増えることが集積化のネックであった。これに対し、STT を使うと、 MTJ 素子に電流を流すことによって磁化反転でき、微細化した場合には電流密度も小さくなるので、 高集積化することが可能になった。STT を用いた MRAM は STT-MRAM と呼ばれる。

かくして、ついに人類は、コイルによらずに、電気を磁気に変換することに成功したのである。

スピン移行トルクの動的解析

伝導電子のもつわずかなスピントルクだけ で、なぜ相手の磁性体の磁気モーメントを反 転できるのだろうか。それは、磁気モーメン トが歳差運動をする力を使うから可能になる のである。図 13 に示すように、磁性体の磁 気モーメント Mは、外部磁界 Heffを加えると その外積 M×Hで表されるトルクを受けて歳 差運動を始めるが、M×dMdtに比例するダ

ンピングトルクを受けて回転しながら次第に磁界方向に傾いていく。もし、この磁気モーメントが、ダ ンピングトルクを丁度打ち消すような方向のスピン移行トルクを伝導電子スピンから受け取ると、歳差 運動はいつまでも続く。これが、**スピントルク振動子(STO)**の原理である。

スピン移行トルクがさらに大きくなると歳差運動が増幅され、ついには反転してしまう。このように 歳差運動の助けを借りて反転するので少ない電流での磁化反転が可能なのである。

このようなスピンの動的な振る舞いは角運動量のトランスファーの項を付け加えたランダウ・リフシ ッツ・ギルバート (LLG)方程式によってよく説明できる。

スピン流とは

電荷の流れとしての電流は、平均自由行程(1-10nm)で表される散乱を受けるのが、スピンの流れ

は電子の不純物やフォノンとの衝突による散乱が少ないためス ピン拡散長は平均自由行程よりかなり長く、強磁性金属で 5-10nm、非磁性金属では100nm~1µm もある。ただし、電荷の 流れは連続であるがスピンの流れには連続性がない。 非磁性の 誘電体ではスピン拡散長は mm に達するものもある。

図 14 に示すように、強磁性体と非磁性体の接合を考え強磁性 体から非磁性体に向かって電子を流すとしよう。↑スピンをもつ 電子が強磁性体から非磁性体へ移動すると、非磁性体の中では本 来↑スピンと↓スピンの電子の数は等しいはずなので、界面から スピン拡散長えs 離れたところまでは ↑スピンの数と↓スピン の数にアンバランスな状態が生じる。このことをスピン注入が起 きているという。このような電流に伴うスピンの流れを電流スピ ン流という。スピン注入があると非磁性体にはスピン蓄積が起き ている。GaAs にスピン注入して蓄積されたスピンを磁気光学効果 によって観測したのが最初の実証と言われている。

もし、図 15 に示すように、 \uparrow スピンの電子が右方向に進み \downarrow ス ピンの電子が左方向に進むとすれば、電荷の流れとしての電流は 流れないが、スピンだけを見ると、 \uparrow スピンは右側に、 \downarrow スピン は左側に流れるので、 $J_{s=J_{1}-J_{1}}$ で定義されるスピン流は右に向か

図 14 電流が運ぶスピン流

図 15 電流を伴わないスピン流

って流れる。このように電流を伴わないスピンの流れを純スピン流と呼ぶ。

スピンホール効果・逆スピンホール効果

スピン流の性質を端的に表しているのがス ピンホール効果である。普通のホール効果は磁 界下に置かれたキャリアがローレンツ力で電 流に垂直な方向に曲げられる効果である。これ に対して、スピンホール効果では、電流が流れ るだけで、スピン軌道相互作用の効果で↑スピ ンと↓スピンが左右に分離され、電流 ja と垂直 方向にスピン流 jaを生じる。スピンホール効果 は1971年に Dyakonov ら¹⁶によって提案され、 2003 年に Murakami ら¹⁷が n-GaAs において 理論的に予言した。スピンホール効果とは逆に、 スピン軌道相互作用の大きな導体にスピン流 を流すと、垂直方向に電場が生じることが発見 され18、逆スピンホール効果と名付けられた。 図 16 右図のように x 方向にスピン流 jaがある と、↑スピンは左に、↓スピンは右に曲げられ る。その結果、スピン流と垂直方向に電流んが 生じる。非局所配置でのスピン流の検出、熱ス ピン流によるスピンゼーベック効果など、スピ ン流の検出にこの逆スピンホール効果が果た

の逆スピンホール効果

した役割は大きい。図 17 は、パーマロイ(Fe20Niso)から Cu へ注入されたスピン流をスピン軌道相互作 用の大きな Pt により電圧に変換している¹⁹。逆スピンホール材料としては、一般に Pt が使われるが、 Au においても逆スピンホール効果が観測されている²⁰。

スピンゼーベック効果

図 18 の上の図は、通常の熱電対で、温度勾配 のもとにおかれた 2 つの導体が異なるゼーベッ ク係数をもつときに、温度差に依存する電圧が 得られる。一方、下の図では、温度差をつけた 1 本の導体中で↑スピンは右方向に流れ、↓スピ ンは左方向に流れている。従って電荷の流れは 打ち消され、熱勾配の方向にスピン流のみが流 れる。このスピン流を逆スピンホール効果で検 出すれば、電圧として取り出せる。これがスピ ンゼーベック効果である。

Uchida らは、温度勾配をつけたパーマロイに Pt を付けることによってこの効果を初めて観測した²¹。 図 19 の中央図に示すように、温度勾配の低温側と高温側でスピンゼーベックの符号が反転している。 右端のように Pt をつけないと電圧は現れない。

その後、磁性絶縁体である磁性ガーネット YIG(Y₃Fe₅O₁₂)においてもスピンゼーベック効果が観測さ れた。図 20 に示すように、試料の上下につけた熱勾配で運ばれるのは、YIG の局在モーメントに誘起 されたスピン波スピン流で、このスピン流からスピンポンピングによって Pt 内に生じた上向きのスピ ン流を逆スピンホール効果で横方向の電流に変化して観測している²²。このデバイスでは、熱の流れと 電流の流れを独立に設計できるというメリットがある。磁性絶縁体としては、ガーネットに限らず MnZn フェライト(Mn,Zn)Fe₂O₄ でもスピンゼーベック効果が観測されている²³。

3. おわりに

以上、主なスピントロニクスの現象と用いられる無機材料について紹介した。ここでは分子スピント ロニクスには触れなかった。カーボンナノチューブ、グラフェンなどナノカーボンにスピンが注入でき ることは Shiraishi らによって明確に実証された。炭素は軽元素なのでスピン軌道相互作用が小さく、 理想的には長いスピン拡散長が期待されたが、現在までのところ数 10µm にとどまっている。また、分 子におけるスピントロニクスについてはまだ確証が得られていない。詳細は Shiraishi による解説²⁴を 参照されたい。

この小文が材料的視点から、スピントロニクスを考えるときの参考になれば幸いである。

Reference

- ² K. Sato: "Advances in Crystal Growth Research", eds. Ki. Sato et al. (Elsevier, 2001) pp.303.
- ³ S. Datta, and B. Das: Appl. Phys. Lett. 56 (1990) 665.
- ⁴ M.N. Baibich et al.: Phys. Rev. Lett. 61 (1988) 2472.
- $^5\,$ G. Binasch et al.: Phys. Rev. B 39 (1989) 4828
- ⁶ B. Dieny et al.: Phys. Rev. B43 (1991) 1297.
- ⁷ T. Miyazaki et al.: J. Magn. Magn. Mater. 139 (1995) L231.
- ⁸ S. Yuasa et al.: Jpn. J. Appl. Phys. Pt2, 43 (2004) L558.
- ⁹ S. Parkin et al.: Nature Mater. 3 (2004) 862.
- ¹⁰ J. Slonczewski: J. Magn. Magn. Mater. 159 (1996) L1
- ¹¹ L. Berger: Phys. Rev. B 54 (1996) 9353.
- ¹² E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, R. A. Buhrman: Science 285 (2000) 865.
- 13 齊藤英治,村上修一:スピン流とトポロジカル絶縁体(共立出版,2014)
- ¹⁴ F.J. Albert et al., Appl. Phys. Lett. 77(2000) 3809.
- ¹⁵ S. Ikeda et al., Nature Mat.M.I. Dyakonov 9 (2010) 721
- ¹⁶ M.I. Dyakonov et al.: JETP Lett. 13 (1971) 467; Phys. Lett. A35 (1971) 459.
- ¹⁷ S. Murakami et al.: Science 301 (2003) 1348.
- ¹⁸ E. Saitoh et al.: Appl. Phys. Lett. 88 (2006) 182509.
- ¹⁹ T. Kimura et al.: Phys. Rev. Lett. 98 (2007) 156601.
- ²⁰ T. Seki et al.: Nature Mater. 7 (2008) 125.
- ²¹ K. Uchida et al.: Nature 455 [7214] (2008) 778.
- $^{22}\,$ K. Uchida et al.: Appl. Phys. Lett. 97 (2010) 172505.
- ²³ K. Uchida et al.: Appl. Phys. Lett. 97 (2010) 262504.
- ²⁴ M. Shiraishi: Carbon-based Spintronics in "Spintronics for Next Generation Innovative Devices" eds. K. Sato and
- E. Saitoh (Wiley, 2015) Chap. 9, pp.155-196.

¹ K. Sato, E. Saitoh eds.: "Spintronics for Next Generation Innovative Devices" (Wiley 2015).