===+	~~ (그 22	」 一	ПФ	七少为宁	□ / +	ŧ♠ſ⊓	<u> </u>
電磁気		学籍番号	氏名	担当教官	日付	検印	合計点
小テ	スト				1/31		
1	解答					点数	
(1)	$B_{1x}S - B_{2x}S = 0$ $B_{1x} = B_{2x}$				/15 点		
(2)	$-H_{1y}\ell + H_{1x}\frac{s}{2} + H_{2x}\frac{s}{2} + H_{2y}\ell - H_{2x}\frac{s}{2} - H_{1x}\frac{s}{2} = 0$ $H_{1y} = H_{2y}$					/15 点	
	得点					30 点	
2	解答				点数		
	\vec{H}						/30点各4点曲線6点
	得点					30 点	

 学籍番号
 氏名
 担当教官
 日付

 後半 第6回
 1/31

3	解答	点数		
(1)	qB_0v_y			
	$-qB_0v_x$	/6 点		
	0			
(2)	初期条件: $t=0$ で $v_z=0$, $z=0$			
	$v_z = 0$ かつ $z = 0$	/5 点		
(3)	の右辺(vy)を の左辺に代入して、			
	$m\frac{m}{qB_0}\frac{d^2v_x}{dt^2} = -qB_0v_x$			
	$\ddot{v}_x + \left(\frac{qB_0}{m}\right)^2 v_x = 0 \qquad \textbf{(単振動の式)}$			
	一般解は $v_x(t) = \alpha \cos(\omega t - \delta)$			
	$(ここで、\omega = qB_0/m とおいた。)$	/10 点		
	よって、加速度 $\dot{v}_x(t) = -\omega \alpha \sin(\omega t - \delta)$			
	初期条件: $t = 0$ で $v_x = -v_0$, $\dot{v}_x = 0$ だから、			
	$\alpha\cos\delta = -v_0$ \hbar 0, $\omega\alpha\sin\delta = 0$			
	この二式を連立させて、			
	$\delta = 0$, $\alpha = -v_0$			
	$v_x(t) = -v_0 \cos\left(\frac{qB_0}{m}t\right)$			

		学籍番号	氏名	担当教官	日付		3/3
後半	第6回				1/31		
(4)		•	果をの右		ると、		
		тv	$y = qB_0v_0$	$\cos(\omega t)$			
	t	について積分	うすれば直ち	に v _y が求め	られる。		
		$v_y(t) = \frac{qB_0}{m\omega}v_0\sin(\omega t) + \beta$					/~ -
			$= v_0 \sin(a$	$(t)+\beta$			/5 点
	初期条件: $t=0$ で $v_y=0$ だから、 $\beta=0$						
			$v_{y}(t) = v_{0} s$	$\sin\left(\frac{qB_0}{m}t\right)$			
(5)	ば直ち	に x(t)と y(件を代入し x(t)=	$v_{\mathbf{x}}(t)$ と $v_{\mathbf{y}}(t)$ が得られって、 $=-\left(v_{0}/\omega\right)\{1$	る。 $\sin(\omega t)$		すれ	/4 点
(6)	x ² + (y (半径 半径	$(v) + \cos^2(\omega t)$ $(v_0 / \omega)^2 = \frac{v_0 / \omega}{e^2 \omega}$ は $\frac{mv_0}{qB_0}$ だか 倍になる は 1/2	引軌道)	引係を使っ -2 -1 -2	て t を y 1 0 1 1 2	消去 2 x	/10 点
	ı	F	問3 得点				40 点
					合	計点	/100 点