
Photoluminescence properties of polycrystalline ZnO/CdS/CuInGaSe 2 solar cells at a low temperature

Фотолюминесцентные свойства поликристаллических солнечных элементов ZnO/CdS/CuInGaSe₂ при низкой температуре

© Г.А. Медведкин*+, Е.И. Теруков*, К. Сато+, Ю. Хасегава+, К. Хиросэ+

- * Физико-технический институт им. А.Ф. Иоффе Российской академии наук,
- 194021 Санкт-Петербург, Россия
- Факультет технологии Токийского университета сельского хозяйства и технологии,
- 2-24-16 Накачо, Коганэй, Токио 184-8588, Япония

(Получена 26 марта 2001 г. Принята к печати 2 апреля 2001 г.)

Изучательные свойства высокоэффективных тонкопленочных поликристаллических солнечных элементов ZnO/CdS/CuInGaSe $_2$ исследованы при температуре $T=20\,\mathrm{K}$. Краевая полоса фотолюминесценции наблюдается в базовом приборе при энергии 1.191 эВ, но исчезает после испытания неинкапсулированного прибора во влажной атмосфере (относительная влажность 85%) при повышенной температуре (85°C). Длинноволновые полосы при 1.13 и 1.07 эВ, связанные с оптическими переходами через уровни дефектов в пленке — поглотителе, сохраняют интенсивность и спектральное положение. Снижение эффективности преобразования солнечного элемента после испытания обусловлено деградацией верхних широкозонных пленок и гетерограницы между CdS и CuInGaSe $_2$.

1. Введение

Поликристаллические солнечные элементы на основе сложных материалов становятся все более близкими к промышленному выпуску, и пилотные линии уже запущены в производство в некоторых странах [1]. Халькопиритный полупроводник CuInGaSe₂ (CIGS) признан одним из основных солнечных материалов для наземной энергетики в этом направлении. Недавно было сообщено о 18.8%-й эффективности малых солнечных элементов [2,3] и более чем 10%-й эффективности для модулей с проверенной стабильностью [4,5]. Задача создания элементов с повышенной эффективностью, более 14%, для минимодулей из CIGS требует особого внимания к стабильности, поскольку эффективность может резко снижаться (до 30%) при воздействии влажности и повышенных температур. Ранее в аналогичных приборных структурах на основе пленок CIS (CuInSe₂) и CIGS нами была исследована микродефектная структура поверхности методом лазерного сканирования и в типичных солнечных элементах установлена связь рекомбинационных процессов со структурой поверхности [6-8]. стоящей работе мы исследовали низкотемпературную фотолюминесценцию (ФЛ) высокоэффективных поликристаллических токопленочных солнечных элементов ZnO/CdS/CIGS, которые не были инкапсулированы и предназначены для CIGS-минимодулей.

2. Эксперимент

Фотовольтаические приборы на основе CIGS были изготовлены и тестированы в Солнечном центре им. Ангстрема (Уппсала, университет). Общая структура базисного солнечного элемента представляла собой многослойный сэндвич из тонких поликристаллических пленок

ZnO: A1/ZnO/CdS/CIGS/Mo. Изготовление проводилось на базисной поточной системе с использованием подложек из натриево-известкового стекла, поликристаллический слой поглотителя CIGS толщиной 2 мкм осаждали методом соиспарения с использованием массспектрометрического контроля [5]. Барьерный слой CdS имел толщину 0.05 мкм, двухслойное окно ZnO — 0.55 мкм. Трехслойный сеточный токоотвод Ni/Al/Ni был выбран как наиболее стабильный в отношении коррозии. Испытание базовых приборов во влажной горячей атмосфере проводили в соответствии с международными рекомендациями IEC 1215 (1000 ч, 85°C, относительная влажность 85%).

Фотолюминесцентные свойства солнечных CIGS-элементов были исследованы с использованием монохроматора JASCO CT-50C, кварцевой оптики, фотоумножителя Hamamatsu R1477 или охлаждаемого германиевого p-i-n-фотодиода North Coast EO-817L. Оптическое возбуждение осуществлялось с помощью диодно-накачиваемого YAG-SGH-лазера (532 нм, 65 мВт) (Лазер-компакт, Москва) или газового He-Cd-лазера (325 нм, 100 мВт) (Кітмоп Еlectric). Температура образца в криостате поддерживалась на постоянном уровне 20 К с помощью Не-рефрижератора типа Стуо-Міпі. Все спектры корректировались на пропускание оптического тракта и чувствительность фотоприемников.

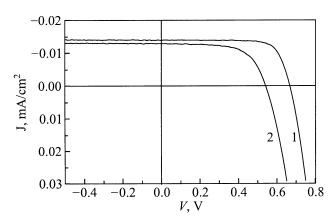
Оценка глубины оптического поглощения многослойной полупроводниковой структуре ZnO/CdS/OVC/CIGS (OVC — соединение с упорядоченными вакансиями) дает следующий результат: для луча зеленого лазера основное поглощение происходит в узкозонных компонентах OVC/CIGS $(1/\alpha \approx 100 \,\mathrm{Hm}, \ \alpha$ — коэффициент поглощения), в то время как для луча ультрафиолетового лазера основное поглощение имеет место в широкозонной части ZnO: A1/ZnO. Поэтому мы имели возможность зондирования многослойных структур на различную глубину.

Таблица 1. Электрические параметры тонкопленочных солнечных элементов ZnO/CdS/CIGS при комнатной температуре с имитатором солнечного освещения.

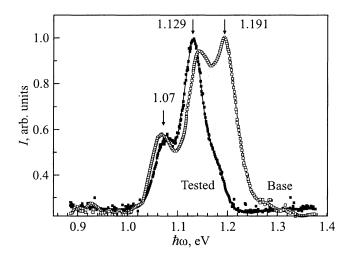
Образец	Площадь, см ²	<i>V_{oc}</i> , мВ	J_{sc} , mA/cm ²	FF, %	Эффектив- ность, %
Калиброванный	0.6	592	32.2	77.8	14.8
элемент					
515С — базовый	0.5	668		75.0	14.1
513В — испытанный	0.5	543	28.2	63.3	9.9

Примечание. Общая световая плотность $1000\,\mathrm{mBT/cm^2}$, атмосферная масса AM1.5.

3. Характеристики прибора


Кратко опишем нагрузочные характеристики солнечных элементов, измеренные в университете Уппсала. На рис. 1 показаны вольт-амперные (J-V) характеристики стандартного базового прибора (кривая 1) и прибора, подвергнутого испытанию в режиме "влага-тепло" (кривая 2). Электрические параметры элементов представлены в табл. 1 и сравниваются с лучшим серийным минимодульным элементом 14.8%-й эффективности. Общее ухудшение выходных параметров наблюдается в результате испытания в режиме "влага-тепло". Фототок (J_{sc}) уменьшается на 0.6 мА/см², в то время как напряжение холостого хода (V_{oc}) и фактор заполнения (FF) спадают значительно сильнее, на 125 мВ и 11.7% соответственно. Поэтому предполагается, что потеря эффективности (уменьшение от 14.1 до 9.9%) происходит в первую очередь за счет ухудшения "барьерных" свойств слоев окон. Зонная диаграмма, хорошо описывающая влияние влаги и тепла, была предложена в [10,11]. Эта диаграмма предполагает, что электрическая проводимость слоев ZnO и поглотителя уменьшается в результате воздействия влагой-теплом, также снижается инверсионный изгиб зон на границе, увеличивается высота барьера для фотогенерированных электронов, покидающих поглотитель. Такое рассмотрение находится в согласии с настоящим и предыдущими измерениями [9,12] этих солнечных элементов.

4. Фотолюминесценция — основные пики


Экспериментально было установлено, что интенсивность интегральной фотолюминесценции уменьшается в результате проведенного испытания солнечных элементов во влажной жаркой атмосфере в ~ 1.5 раза. Это уменьшение приблизительно следует понижению эффективности прибора после тестирования.

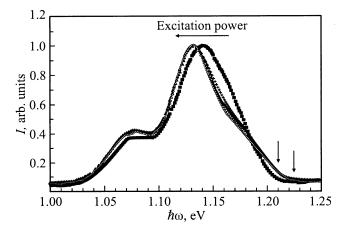
На рис. 2 показаны два спектра $\Phi \Pi$, $I(\hbar \omega)$, измеренные в одинаковых условиях для базового и тестированного

образцов солнечных элементов ZnO/CdS/CIGS. Наиболее интенсивный коротковолновый пик при энергии фотонов $\hbar\omega = 1.191$ эВ проявляется в приборах с эффективностью преобразования > 14%. После выдержки прибора во влажной горячей атмосфере эта полоса ФЛ исчезает. Согласно измерениям спектральной эффективности характерная энергия 1.192 эВ для начала фотогенерации в базовых приборах соответствует ширине запрещенной зоны пленки — поглотителя. Эта энергия с хорошей точностью отвечает максимуму спектра ФЛ и поэтому может быть приписана межзонным излучательным переходам в тройном полупроводнике CuInGaSe₂. Поскольку коэффициент оптического поглощения тройного полупроводника в области энергий порядка ширины запрещенной зоны E_g очень высок ($\sim 10^5 \, {\rm cm}^{-1}$), глубина поглощения составляет ~ 0.1 мкм, и, следовательно, ФЛ

Рис. 1. Нагрузочная характеристика солнечных элементов до (I) и после (2) проведенного испытания во влажной атмосфере при повышенной температуре. Температура измерения $T=25^{\circ}\mathrm{C}$.

Рис. 2. Спектры фотолюминесценции солнечных CIGS-элементов до и после тестирования в режиме "влага-тепло". Температура измерения $T=20\,\mathrm{K}$, длина волны возбуждения $\lambda=532\,\mathrm{hm}$, мощность $50\,\mathrm{mBt}$. Приведены характерные энергии в эВ.

¹ Недавно шведская группа сообщила [9] о новом мировом рекорде эффективности 16.6% для минимодулей на основе CIGS.


исходит из области вблизи гетерограницы CdS/CIGS. Поэтому можно заключить, что воздействие влаги и тепла сказывается на оптических свойствах гетерограницы и области, прилегающей к гетерогранице в OVC.

В отличие от межзонной полосы излучения, воздействие влажного нагрева не вызывает заметных изменений в других полосах $\Phi \Pi$, при энергиях $\hbar \omega = 1.129$ и 1.07 эВ. Спектральное положение и интенсивность этих полос практически не изменяются (рис. 2). Соответствующие рекомбинационные оптические переходы связаны с уровнями дефектов в CIGS ($E_g = 1.2 \, \mathrm{sB}$) с дефицитом энергий относительно E_g $\Delta_1 = 60\,\mathrm{m}$ эВ и $\Delta_2 = 120$ мэВ. Аналогичные переходы наблюдались в спектрах ФЛ монокристаллов CuInSe₂ ($E_g = 1.04$ эВ) и CuGaSe₂ ($E_g = 1.7$ эВ) [13,14] с близким дефицитом энергий Δ_1 и Δ_2 . В стехиометрических кристаллах $CuInSe_2$ излучательный переход с донора V_{Se} в валентную зону дает энергию донорного уровня $E_D=57\,\mathrm{m}$ эВ, близкую к Δ_1 , в кристаллах с отклонением от стехиометрии некоторый глубокий акцептор с энергией активации, равной Δ_2 , дает слабую полосу ФЛ. В [14] установлено, что в $CuGaSe_2$ уровень с энергией Δ_1 принадлежит заряженной вакансии $V_{
m Se}^+$, а уровень с энергией Δ_2 устойчив в отношении термообработок кристалла в различных средах. Таким образом, прослеживается аналогия фотолюминесцентных свойств трех материалов CIGS, $CuInSe_2$ и $CuGaSe_2$, и полоса $\Phi\Pi$ при $\hbar\omega = 1.13 \, {
m 3B}$ может быть непротиворечиво приписана оптическому переходу $V_{\mathrm{Se}} \rightarrow \langle \mathrm{валентная} \ \mathrm{зонa} \rangle \ \mathrm{в} \ \mathrm{пленкe} - \mathrm{поглоти-}$ теле. Энергии стабильных полос ФЛ 1.13 и 1.07 эВ на рис. 2 отвечают оптическим переходам ниже края поглощения CIGS, т. е. излучение идет из глубины пленки поглотителя, с расстояния $d \gtrsim 0.1$ мкм. Поэтому можно считать, что воздействие влагой-теплом не сказывается на объемных свойствах пленки CIGS (имеются в виду

Таблица 2. Параметры однородно-уширенных гауссовых полос, полученных разложением спектров фотолюминесценции

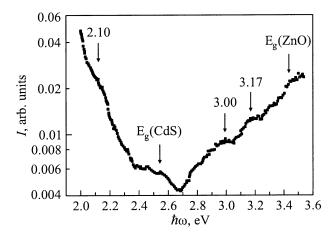
Полоса	Центр, эВ	FWHM, мэВ	Высота, отн. ед.	Площадь, отн. ед.				
Мощность 10 мВт								
1	1.076	48.3	0.253	0.016				
2	1.138	51.8	0.726	0.050				
3	1.173	38.9	0.226	0.012				
4	0.938	375.6	0.033	0.017				
5	1.333	315.5	0.065	0.027				
Мощность 65 мВт								
1	1.075	50.0	0.278	0.019				
2	1.131	42.2	0.715	0.040				
3	1.173	46.7	0.266	0.016				
4	0.957	685.9	0.040	0.031				
5	1.467	522.1	0.037	0.038				

Примечание. Длина волны возбуждения $\lambda = 532\,\mathrm{mm}$.

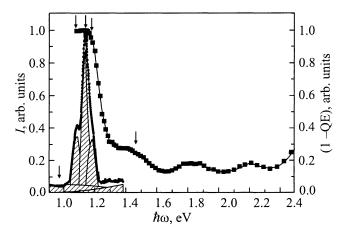
Рис. 3. Изменение спектров фотолюминесценции тестированного образца по мере изменения уровня возбуждения в диапазоне $10-65\,\mathrm{mBr}$. Длина волны возбуждения $\lambda=532\,\mathrm{mm}$, температура измерения $T=20\,\mathrm{K}$.

кристаллиты, но не границы раздела²) или это воздействие на пленки CIGS значительно слабее, чем на пленки ZnO и CdS.

Исследование спектров ФЛ в зависимости от мощности лазерной накачки ($W = 5-65 \,\mathrm{MBT}$) показало отсутствие спектрального сдвига для всех трех полос в базовом приборе. Это говорит о том, что за основное излучение в базовом приборе ответственны переходы зона-зона и зона-уровень. Спектры ФЛ для солнечных элементов после испытания в режиме "влага-тепло" в зависимости от мощности лазерной накачки приведены на рис. 3. С увеличением мощности возбуждения спектры трансформируются, показывая, что происходит перекачка излучаемой энергии между двумя высокоэнергетическими полосами ФЛ. Кажущееся спектральное смещение на самом деле отсутствует, и это было доказано разложением сложного спектра (рис. 3) на три элементарные полосы гауссова типа. Параметры спектрального разложения (положение центра полосы, ширина на полувысоте FWHM, амплитуда и площадь, охватываемая полосой) для двух спектров (W = 10и 65 мВт) приведены в табл. 2. При малых уровнях накачки, $W = 5 - 10 \,\mathrm{mBt}$, более значительный вклад дает коротковолновая составляющая при $\hbar\omega = 1.17$ эВ, в то время как при накачках $W = 20-65 \,\mathrm{MBT}$ основная полоса при $\hbar\omega=1.13$ эВ становится относительно более мощной (ср. величины высоты и площади для спектральных полос 2 и 3 в табл. 2). Понятно, что рекомбинационный канал с энергией оптического перехода $\hbar\omega = 1.17$ эВ насыщается при большом потоке возбуждающих фотонов, и генерированные носители заряда рекомбинируют через альтернативный канал с меньшей энергией (дефицит энергии $\Delta \approx 40$ мэВ).


² Границы раздела играют важную роль в диффузии Na-атомов из стеклянной подложки через Мо-слой в объем GIGS-поглотителя [10] и могут иметь иные свойства, нежели кристаллиты.

На рис. З стрелками отмечена граница начала роста излучения ФЛ, которая, как видно, смещается с уровнем накачки. При высокой мощности лазерной накачки спектр ФЛ уширяется в область больших энергий на 15 мэВ, что может говорить о включении дополнительного канала излучательной рекомбинации через уровни дефектов в интерфейсном слое OVC.


5. Фотолюминесценция — коротковолновый и длинноволновый хвосты

Мы обнаружили значительное различие в коротковолновой области спектра $\Phi \Pi$ для двух исследованных приборов. Хотя спад $\Phi \Pi$ на высокоэнергетическом крыле происходит с одинаковой крутизной $68 \, {\rm yB}^{-1}$, край оказывается смещенным к меньшим энергиям фотонов для подвергнутых испытанию элементов (рис. 2). Форма коротковолнового крыла $\Phi \Pi$ в окрестности максимумов 1.13 и $1.19 \, {\rm yB}$ одинакова в первом приближении и может быть описана гауссовым контуром. Высокоэнергетическая часть коротковолнового крыла в тестированном элементе искажена за счет слабого вклада рекомбинационных переходов вблизи E_g пленки CIGS.

Поскольку абсолютная интенсивность $\Phi \Pi$ базового элемента превышает интенсивность $\Phi \Pi$ тестированного на влагу—тепло прибора, нам удалось зарегистрировать излучение в более коротковолновой области спектра, вплоть до энергий $E_g(\mathrm{CdS})$ и $E_g(\mathrm{ZnO})$, именно для базового солнечного CIGS-элемента. Используя накачку ультрафиолетовым лучом He–Cd-лазера, мы получили спектральное распределение интенсивности, представленное на рис. 4. Основные спектральные особенности $\Phi \Pi$ показаны стрелками. Перегиб при энергии 2.10 эВ может быть приписан оптическому переходу через уровни дефектов в широкозонных окнах CdS (и/или ZnO), но

Рис. 4. Коротковолновый хвост спектра фотолюминесценции базового солнечного элемента. Температура измерения $T=20\,\mathrm{K}$, длина волны возбуждения $\lambda=325\,\mathrm{mm}$, мощность $100\,\mathrm{mBt}$. Приведены характерные энергии в эВ.

Рис. 5. Сравнение спектров фотолюминесценции и эмиссионной способности (1-QE) для солнечного элемента, подвергнутого испытанию в режиме "влага-тепло". Температура измерения $T=20\,\mathrm{K}$. Стрелками отмечено спектральное положение максимумов гауссовых полос фотолюминесценции.

не в слое OVC, который имеет ширину запрещенной зоны меньшую: согласно [11,15] $E_g = 1.3$ эВ. Минимум излучательной способности базового солнечного элемента приходится на энергию, соответствующую энергетическому зазору CdS (рис. 4). Отсутствие краевого излучения, очевидно, указыват на худшее с точки зрения эффективности ФЛ качество пленки сульфида кадмия, нанесенной методом химической ванны, по сравнению с пленками CIGS и ZnO, выращенными в вакуумной камере. С увеличением энергии фотонов интенсивность ФЛ солнечного элемента растет и достигает сравнительно высокого уровня при $E_{\varrho}({\rm ZnO}) = 3.45\,{\rm эB}$. Спектр ФЛ на рис. 4 не имеет отчетливых спектральных структур в диапазоне энергий 2.8-3.5 эВ, хотя ряд перегибов может быть сопоставлен с некоторыми локальными уровнями дефектов в наиболее широкозонной компоненте тонкопленочного прибора. Действительно, широкозонные спектры ФЛ известны для пленок оксида цинка, получаемых различными методами [16,17] и содержащих целый ряд излучающих дефектов.

На рис. 5 проводится сравнение спектра ФЛ и спектра эмиссионной способности гетероперехода Zn/CdS/CIGS, полученного из спектрального распределения фотовольтаической эффективности преобразования (QE) солнечного элемента после выдержки в режиме "влага-тепло". Спектр ФЛ разложен на однородные гауссовы полосы, три полосы составляют основное излучение и две широкие полосы (показаны неполностью, только в пределах экспериментальных данных) составляют близкое к фону излучение. Характерные максимумы однородных полос ФЛ показаны на рис. 5 стрелками. Длинноволновое крыло ФЛ начинается при $\hbar\omega > 0.88$ эВ и имеет максимум при 0.94-0.96 эВ. Краевое излучение достигает максимума на границе спектра (1-QE). Далее спад ФЛ идет в согласии со снижением эмиссионной спо-

собности (ростом эффективности преобразования QE) в том же диапазоне. При энергиях $\hbar\omega > 1.25$ эВ спектр $\Phi \Pi$ также хорошо следует спектральному ходу эффективности солнечного элемента, где начинает проявляться интерференция в просветляющем слое прибора. Несмотря на снижение эффективности QE в результате испытания прибора во влажной горячей атмосфере, длинноволновый край спектра QE практически не испытывает смещения, однако спектры ФЛ позволяют обнаружить тонкие изменения в ансамбле оптических переходов, а также связать их с некоторыми химическими и электрохимическими реакциями. Одна из возможных реакций протекает в окне ZnO: Al/ZnO, где, предположительно, влажный воздух окисляет преимущественно атомы A1. Гидроксильные группы ОН- вступают в химическую реакцию с пленками ZnO и CdS, в результате чего образуются гидроксилы $ZnOH^-$, $CdOH^-$ и $Cd(S,OH)_x$ на разных стадиях влажного нагрева. Эти процессы должны приводить к повышению электрического сопротивления в пленке ZnO, деградации пленки CdS и прилегающих гетерограниц, включая гетерограницу с OVC. Поскольку влияние Na в поликристаллических солнечных элементах проявляется через диффузию достаточно сильно, приводя к пассивации мелких акцепторов V_{Cu} в пленке поглотителя, можно предположить обратный процесс при воздействии влаги и тепла. Атомы натрия в узлах меди взаимодействуют с водой, освобождая узлы; это увеличивает концентрацию вакансий $V_{\rm Cu}$, которые и выступают в качестве альтернативного канала рекомбинации, упомянутого выше. Детальное рассмотрение химических взаимодействий в многослойном сэндвиче трубует изучения процессов электропереноса в солнечном элементе и будет обсуждено отдельно.

6. Заключение

Воздействие влаги и тепла в стандартных условиях испытания приводит к снижению излучательных свойств высокоэффективных солнечных элементов на основе тонких поликристаллических пленок CIGS; это коррелирует со спадом интегральной эффективности преобразования прибора. Резко снижается околокраевое излучение, в то время как длинноволновые излучательные полосы при $\hbar\omega = 1.13$ и 1.07 эВ сохраняются. Для базового прибора минимум излучательной способности в коротковолновой области приходится на энергии, соответствующие ширине запрещенной зоны CdS; повышение интенсивности ФЛ с энергией фотонов вплоть до $E_g(ZnO)$, вероятно, связано с излучением через уровни дефектов в широкозонном ZnO. Обе пленки подвержены деградации, поскольку ФЛ в этой спектральной области также не регистрируется после испытания прибора в режиме "влага-тепло". Предположительно, присутствие влаги при температуре 85°C ускоряет некоторые химические (или электрохимические) реакции в пленках ZnO, CdS и на гетерогранице двух материалов CdS и ClGS,

приводящие к первостепенной деградации излучательной способности прибора в сине-фиолетовой области спектра.

В целом стабильность солнечных элементов на основе CIGS остается высокой в обычных лабораторных условиях в течение длительного срока, но при эксплуатации приборов на открытом воздухе инкапсуляция становится необходимой, поскольку служит хорошей защитой от воздействия атмосферной влаги.

Авторы выражают благодарность проф. Л. Стольту и Дж. Веннербергу (Ångström Solar Center, Uppsala University, Sweden) за предоставленные образцы, базовые характеристики солнечных элементов и полезную дискуссию.

Работа поддержана исследовательским грантом Японского фонда для содействия науке (JSPS, Tokyo, Japan).

Список литературы

- [1] H.W. Schock, R. Noufi. Progr. Photovoltaics, 39, 151 (2000).
- [2] T. Negami, Y. Hasimoto, S. Nishiwakir. Proc. 11th Int. PVSEC (1999) p. 993.
- [3] H.S. Ullal, K. Zweibel, B. von Reodern. *Proc. 26th IEEE PVSC* (1997) p. 301.
- [4] K. Kushiya, I. Sugiyama, M. Tachiyuki, T. Kase, Y. Nagoya, D. Okumura, M. Sato, O. Yamase, H. Takeshita. *Proc. 9th Int. PVSEC* (1996) p. 143.
- [5] J. Kessler, M. Bodegård, J. Hedström, L. Stolt. Techn. Digest 11th Int. Photovoltaic Science and Engineering Conf. (Sapporo, 1999) p. 631.
- [6] G.A. Medvedkin, L. Stolt, J. Wennerberg. ΦΤΠ, 33, 1037 (1999).
- [7] G.A. Medvedkin, J. Wennerberg. Polycrystalline Semiconductors V-Bulk Materials. Thin Films and Devices, Ser. Solid State Phenomena, ed. by J.H. Werner, H.P. Strunk and H.W. Schock (Uettikon am See, Switzerland, Scitech Publ. Ltd., 1999) p. 69.
- [8] G.A. Medvedkin, J. Wennerberg. 12th Int. Conf. Ternary and Multinary Compounds (Taiwan, 2000) abstr. P2–36 [Japan. J. Appl. Phys., Suppl. 39-1 (2000)].
- [9] J. Kessler, M. Bodegard, J. Hedström, L. Stolt. Proc. 16th European PVSEC (Glasgow, 2000).
- [10] F. Karg, H. Calwer, J. Rimmasch, V. Probst, W. Reidl, W. Stetter, H. Vogt, M. Lampert. *Proc. 11th Intern. Conf. Ternary and Multinary Compounds* (Salford, 1997) [Inst. Phys. Ser. (Bristol and Philadelphia, IOP Publ.), **152**, 909 (1998)].
- [11] U. Rau. *12th Int. Conf. Ternary and Multinary Compounds* (Taiwan, 2000) abstr. Fr-A1-1 [Japan J. Appl. Phys., Suppl. **39-1** (2000)].
- [12] L. Stolt, M. Bodegård, J. Hedström, J. Kessler, M. Ruckh, K.O. Velthaus, H.W. Schock. *Proc. 11th E.C. Photovoltaic Solar Energy Conference* (Mountreux, 1992) (Harwood Academic Publisher, Chur 1993) p. 120.
- [13] G.A. Medvedkin, M.A. Magomedov, J. Appl. Phys., **82**, 4013 (1997).
- [14] T. Nishi, G.A. Medvedkin, Yu. Katsumata, K. Sato, H. Miyake. Japan. J. Appl. Phys., 40, 59 (2001).

- [15] T. Dullweber, G. Hanna, U. Rau, H.W. Schock. *Proc.* 11th Int. PVSEC (1999) p. 85.
- [16] S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliades, D.C. Look. Appl. Phys. Lett., 75, 3947 (1999).
- [17] S. Im, B.J. Jin, S. Yi. J. Appl. Phys., 87, 4558 (2000).

Редактор Л.В. Шаронова

Potoluminescent properties of polycrystalline solar cells ZnO/CdS/CuInGaSe₂ at low temperature

G.A. Medvedkin*+, E.I. Terukov*, K. Sato+, Yu. Hasegawa+, K. Hirose+

* Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia + Faculty of Technology, Tokyo University of A & T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

Abstract Emission properties of the high-efficiency thin-film polycrystalline solar cells ZnO/CdS/CuInGaSe₂ have been studied at $T=20\,\mathrm{K}$. The edge band of photoluminescence is observed in the baseline device at 1.191 eV, but vanishes after testing non-incapsulated device in a damp atmosphere (85% relative humidity) at an elevated temperature (85°C). Long wavelength bands at 1.13 and 1.07 eV, which have been associated with optical transitions through defect levels in the absorber film, retain their intensity and spectral position. A decrease in conversion efficiency of the solar cell after the exposure is caused by degradation of the upper widegap films and the heterointerface between CdS and CuInGaSe₂.