J. PHYS. Soc. JAPAN 36 (1974) 311

Optical Absorption of CuFeS₂ and Fe-Doped CuAlS₂ and CuGaS₂

Ken'ichi Kondo,* Teruo Teranishi and Katsuaki Sato

Broadcasting Science Research Laboratories of Nippon Hoso Kyokai, Setagaya, Tokyo (Received October 17, 1973)

Chalcopyrite, CuFeS₂, has been known as an antiferromagnetic semiconductor. As the nonmagnetic analogues of CuFeS₂ there are some I-III-VI₂ ternary semiconductors. For chalcopyrite which contains magnetic ions Pauling and Brockway¹⁾ considered that CuFeS₂ is a mixture of two extreme ionic states, Cu+Fe³+S₂²- and Cu²+Fe²+S₃²-.

The optical absorption edge of chalcopyrite²³ lies at much lower energy than those of nonmagnetic analogues, CuAlS₂ and CuGaS₂, lie.²³ It is naturally expected that d-electrons take part in this optical absorption. In order to clarify the origin of this low absorption edge and to get some informations of the ionic state of CuFeS₂ we performed optical absorption measurements on the evaporated film of CuFeS₂ and single crystals of non-magnetic compounds, CuAlS₂ and CuGaS₂, which were doped

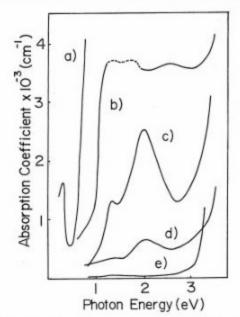


Fig. 1. Absorption spectra of a) CuFeS₂, b) CuAl_{0.93} Fe_{0.07} S₂, c) CuAl_{0.994} Fe_{0.005} S₂. d) CuAl_{0.292} Fe_{0.0005} S₂ and e) CuAlS₂.

with the magnetic ion, Fe, in various concentrations.

These crystals were prepared by the chemical transport reaction in the closed tube, using iodine as a transport agent. Absorption spectra of CuAl_{1-x} Fe_xS₂ are shown in Fig. 1 together with those of CuFeS₂ and CuAlS₂. CuFeS₂ shows the absorption edge at about 0.6 eV. Two absorption peaks are observed at 1.3 eV and 2.0 eV on the lower energy region of the absorption edge of Fe-doped CuAlS₂. For CuGa_{1-x}Fe_xS₂ similar two absorption peaks also occur at 1.2 eV and 1.9 eV. The absorption coefficients of these peaks increase with x, and the oscillator strength is about 7.10-2.

In Cu-doped ZnS, which is a binary analogue of CuGaS₂, the charge transfer transitions from Cu²⁺ were observed in the same energy region. (1) However, we can say that Cu²⁺ ions do not participate in the absorption peaks which are observed for Fe-doped CuAlS₂ and CuGaS₂ from the following two optical investigations.

We made single crystals of CuAl_{1-x}M_xS_z and CuGa_{1-x}M_xS_z, where M was Mn or Zn ion. Mn and Zn are divalent ions and the formation of Cu²⁺ ions is expected by the charge neutrality. Nevertheless the absorption spectra of these crystals show no peaks in the lower energy region of the absorption edge, while Fe-doped CuAlS_z and CuGaS_z show these strong absorption peaks.

We also measured the absorption spectrum of an Fe-doped Ga₂S₅ crystal which has the wurtzite structure and contains no Cu ions. It shows similar absorption peaks with those of Fe-doped CuAlS₂ and CuGaS₃ in the same energy region.

From these results it is concluded that strong absorption bands of $\text{CuAl}_{1-x}\text{Fe}_x\text{S}_z$ at $1.3\,\text{eV}$ and $2.0\,\text{eV}$ and of $\text{CuGa}_{1-x}\text{Fe}_x\text{S}_z$ at $1.2\,\text{eV}$ and $1.9\,\text{eV}$ are not related to the presence of Cu ions and originate from Fe^{z+} ions. The large value of oscillator strength suggests that these absorptions arise not from the d-d transition but from the charge transfer transitions relating to Fe^{z+} . Then, it is highly probable that the absorption edge of CuFeS_z at about $0.6\,\text{eV}$ is the foot of the corresponding transition.

Details will be published elsewhere.

References

- L. Pauling and L.O. Brockway: Z. Krist. 82 (1932) 188.
- C.H.L. Goodman and R.W. Douglas: Physica 20 (1954) 1107.
- J.L. Shay, B. Tell, H.M. Kasper and L.M. Shiavone: Phys. Rev. B 5 (1972) 5003.
- I. Broser, K.H. Franke and H.J. Schulz: II-VI Semiconducting Compounds, ed. K.G. Thomas (Benjamin, New York, 1967) P. 81.

^{*} On leave from College of Science and Engineering, Aoyama Gakuin University, Setagaya, Tokyo.