# MnGeP2 Thin Films Grown by Molecular Beam Epitaxy T. Ishibashi, <sup>1</sup> K. Minami, <sup>1</sup> J. Jogo, <sup>1</sup> T. Nagatsuka, <sup>1</sup> H. Yuasa, <sup>1</sup> V. Smirnov, <sup>2</sup> Y. Kangawa, <sup>1</sup> A. Koukitu, <sup>1</sup> and K. Sato <sup>1</sup> Received 20 August 2004; accepted 29 September 2004 Growth conditions for MnGeP<sub>2</sub> thin films have been investigated by using molecular beam epitaxy (MBE) method. Mn and Ge were evaporated by K-cells, and P<sub>2</sub> was supplied by decomposing tertialybutylphosphine (TBP). GaAs (001) and InP (001) single crystals were used as substrates. An X-ray diffraction peak, which can be assigned to (008) peak of MnGeP<sub>2</sub>, was observed at nearly the same position as the (004) peak of GaAs. The lattice constant of the MnGeP<sub>2</sub> thin film was determined to be 1.13 nm assuming its crystal structure is a c-axis oriented chalcopyrite type structure. Secondary phases such as GeP. MnGe<sub>7</sub> and MnP were observed for beam fluxes of Mn and Ge as high as $1 \times 10^{-8}$ Torr. KEY WORDS: MnGeP2: molecular beam epitaxy; MnP; GeP; chalcopyrite. # 1. INTRODUCTION Doping of 3d transition metals into various semiconductors has been attracting attention because of the possibility to make semiconductors ferromagnetic. We reported that Mn-doped II-IV-V2 type chalcopyrite crystals, CdGeP2 and ZnGeP2, have shown a room temperature ferromagnetism [1,2]. Compared with III-V materials (e.g., GaAs, InP. etc.). II-IV-V2 crystals were found to be easier to incorporate 3d transition metals, the fact suggesting a possibility of complete substitution of the II-site by 3d transition metals. In fact. MnGeP2 seems to be formed at the surface when Mn is deposited on a ZnGeP<sub>2</sub> crystal heated at 400 C. It was found by an in situ X-ray photoemission spectroscopy (XPS) measurement that the top surface of the Mndeposited crystal consisted of Mn. Ge and P. It was also suggested from in situ reflection high-energy diffraction (RHEED) observation during deposition that the crystal structure was maintained during the Mn-deposition process [3.4]. For detailed study of the MnGeP<sub>2</sub> material, preparation of high quality thin films is strongly re- quired since the samples obtained in the previous work have a gradation in Mn concentration due to the Mn diffusion procedure. Therefore, we have started a study of a preparation of thin films by using molecular beam epitaxy (MBE) technique. In this paper, we report on a preparation and X-ray characterization of MnGeP<sub>2</sub> thin films on GaAs (001) and InP (001). #### 2. EXPERIMENTS A schematic drawing of the MBE equipment used in this study is shown in Fig. 1, in which Mn and Ge are evaporated from conventional Knudsen cells (K-cells), while P2 is supplied by decomposing tertiary butyl phosphine (TBP) using a cracking cell. the flow rate of which is controlled by a mass flow controller. TBP is known to be less toxic and easier to control than the popular phosphorous source PH<sub>3</sub>. The structure of cracking cell, which consists of a pyrolytic boron nitride (PBN) tube packed with Ta shots, was designed following the structure reported by Sai et al. [5]. The cracking procedure is required for the substrate temperature lower than 700 C. The temperature of the cracking cell is kept at 810 $\sim$ 835 C to assure an efficient decomposition of TPB into P2 during the MBE growth [6]. Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan. <sup>&</sup>lt;sup>2</sup>Ioffe Physico-Technical Institute, St Petersburg 194021, Russia. # Ishibashi, Minami, Jogo, Nagatsuka, Yuasa, Smirnov, Kangawa, Koukitu, and Sato Fig. 1. A schematic drawing of our molecular beam epitaxy equipment. MnGeP<sub>2</sub> thin films were prepared on GaAs(001) and InP(001) substrates by a co-evaporation technique. The growth process of MnGeP<sub>2</sub> was monitored using an in sinu RHEED measurement. Chemical compositions were measured using an energy dispersion type X-ray spectroscopy (EDX) attached to the SEM apparatus. The crystallinity was analyzed by X-ray diffraction (XRD) technique using a Philips type X'Pert X-ray diffractometer. ## 3. RESULTS AND DISCUSSION Growth conditions of thin films prepared in this experiment and those chemical compositions measured by EDX are listed in Tables I and II. GaAs(001) substrates were used for samples #1 to #4 shown in Table I. and InP(001) for samples #5 to #8 shown in Table II. The beam flux of both Mn and Ge was varied between $6.4 \times 10^{-9}$ and $9.0 \times 10^{-9}$ Torr and the TBP flow rate between 1.6 and 2.0 sccm. Substrate temperatures of 342–541 °C were used and deposition time was 90–180 min. The composition ration Mn/Ge was deviated from 1 because of an error in measuring the low beam fluxes of $10^{-9}-10^{-8}$ Torr. In all cases, therefore, a re-evaporation of Mn was not confirmed within an experimental error. We could not determine an exact value of the partial pressure of $P_2$ , in our MBE system, but it should be several orders of magnitude higher than Mn and Ge, taking into account a total pressure that reaches as high as $10^{-4}$ Torr during growth. Figures 2 and 3 show XRD patterns measured in the samples shown in Tables I and II. respectively. It is found that zinc-blend (ZB) type GeP [7] and MnGe<sub>x</sub> are observed in the samples #1 and #2 which were prepared with high growth rate above $1.8 \times 10^{-8}$ Torr for both Mn and Ge. In contrast, GeP Table I. Growth Conditions for Thin Films on GaAs(001) Substrates | Sample | Mn flux (Torr) | Ge flux (Torr) | TBP flow<br>rate (sccm) | T <sub>sub</sub> ( C) | Depo.<br>time (min) | Composition<br>Mn:Ge:P | |--------|----------------------|----------------------|-------------------------|-----------------------|---------------------|------------------------| | #1 | $1.8 \times 10^{-8}$ | $1.8 \times 10^{-8}$ | 1.6 | 541 | 90 | 0.81 : 1 : 1.11 | | #2 | $2.4 \times 10^{-8}$ | $2.1 \times 10^{-8}$ | 1.6 | 414 | 180 | 1.72:1:2.99 | | #3 | $1.1 \times 10^{-8}$ | $1.1 \times 10^{-8}$ | 2.0 | 400 | 240 | 1.37:1:2.59 | | #4 | $6.5 \times 10^{-9}$ | $9.0 \times 10^{-9}$ | 2.0 | 400 | 180 | 0.95:1:2.14 | January 13, 2005 Journal of Superconductivity: Incorporating Novel Magnetism (JOSC) Table II. Growth Conditions for Thin Films on InP(001) Substrates | Sample | Mn flux (Torr) | Ge flux (Torr) | TBP flow<br>rate (seem) | T <sub>suh</sub> ( C) | Depo.<br>time (min) | Composition<br>Mn:Gc:P | |--------|----------------------|----------------------|-------------------------|-----------------------|---------------------|------------------------| | #5 | $9.0 \times 10^{-9}$ | $9.0 \times 10^{-9}$ | 2.0 | 435 | 180 | 1.92:1:- | | #6 | $1.0 \times 10^{-8}$ | $1.0 \times 10^{-8}$ | 2.0 | 342 | 180 | 1.29:1:- | | #7 | $6.5 \times 10^{-9}$ | $9.0 \times 10^{-9}$ | 2.0 | 342 | 100 | 0.95:1:- | | #8 | $6.4 \times 10^{-9}$ | $6.4 \times 10^{-9}$ | 2.0 | 435 | 180 | 1,40:1:- | can not be detected by XRD measurement when the beam fluxes of Mn and Ge is lower than $1.1 \times 10^{-8}$ Torr. A similar feature is observed for MnP. Although it is quite difficult to completely suppress a segregation of MnP, it is suppressed for thin films prepared on InP substrates using beam fluxes less than $1 \times 10^{-8}$ Torr. Suppression of these secondary phases has a crucial importance for magnetic studies of MnGeP2, because MnP and Mn5Ge3 are known to show ferromagnetism at room temperature. On the other hand, a diffraction peak from MnGeP<sub>2</sub> is found at 66.04, which is labeled as (008) assuming that the chalcopyrite MnGeP2 is grown with a c-axis perpendicular to the substrate surface. The position of the peak is so close to the (002) peak position of GaAs that it can only be discriminated in films prepared on InP substrates, whose lattice constant is much larger than GaAs. Therefore, we believe that thin films with the same lattice constant as observed in the films prepared on InP substrates are grown on the GaAs substrates. Segregation of secondary phases seems considerably suppressed compared with those prepared on GaAs substrates, in spite of a larger lattice mismatch of MnGeP2 with InP than with GaAs. The reason may be that the surface morphology of the InP substrate is better than that of the GaAs substrate and beam fluxes of Mn and Ge are lower than that for GaAs. In fact, RHEED patterns of InP substrates after thermal cleaning is better than that of GaAs, because epi-ready InP Fig. 2. XRD patterns of thin films prepared on GaAs (001) substrates shown in Table 1. Fig. 3. XRD patterns of thin films prepared on InP (001) substrates shown in Table II. substrates were used while GaAs substrates were non-epi-ready. Therefore, the buffer layer is strongly required. We consider that Ge is a good candidate as a buffer layer, because Ge is congenial to II-Ge-IV<sub>2</sub> chalcopyrite materials, and a Ge buffer layer can easily be used in our system compared to buffer layers of GaAs or InP. The lattice constant of MnGeP2 is determined to be c = 1.130 nm assuming the peak observed in Fig. 3 is the (008) diffraction line. This value is quite close to that of polycrystalline MnGeP<sub>2</sub>, c = 1.127 nm, reported by Cho et al. [8], but it is not close to that of $MnGeP_2$ , c = 1.0716 nm, predicted theoretically by a calculation reported by Zhao et al. [9]. The difference between these data may be due to the difference in a degree of ordering in the crystal structure. Although a perfectly ordered chalcopyrite structure is assumed in the calculation, it is difficult to consider that these samples obtained experimentally have a perfectly ordered structure. The structure, ordered or disordered structure, can be revealed by a reciprocal lattice mapping and a transmission electron microscope, and they are under investigation. ### 4. SUMMARY We have successfully obtained oriented $MnGeP_2$ thin films on InP (001) and GaAs (001) substrates by MBE method. The lattice constant of $MnGeP_2$ was determined to be c=1.130 nm, assuming the c-axis oriented chalcopyrite structure. It is found that extremely low beam fluxes of Mn and Ge less than $1 \times 10^{-8}$ Torr are required to suppress secondary phases such as GeP, MnGe<sub>x</sub> and MnP. #### ACKNOWLEDGMENTS This work has been carried out under the 21st COE Project "Future Nano Materials" of TUAT and supported in part by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science. #### REFERENCES - K. Sato, in Japanese Reseach for Pioneering Ternary and Multinary Compounds in the 21st Century, T. Matsumoto, T. Takizawa, S. Shirakata, T. Wada, and N. Yamamoto, eds., (IPAP, Tokyo, 2001) 228-243. - G. A. Mcdvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, *Jpn. J. Appl. Phys.* 39, Part 2 [10] L949-L951 (2000). - G. A. Medvedkin, K. Hirose, T. Ishibashi, T. Nishi, V. G. Voevodin, and K. Sato, J. Cryst. Growth 236, 609-612 (2002). - Y. Ishida, D. D. Sarma, K. Okazaki, J. Okabayashi, J. I. Hwang, H. Ott, A. Fujimori, G. A. Mcdvedkin, T. Ishibashi, and K. Sato, *Phys. Rev. Lett.* 91, 107202 (2003). - H. Sai, H. Fujikura, and H. Hasegawa. Jpn. J. Appl. Phys. 38, Part1 [1A] L151-L158 (1999). - E. A. Beam III, T. S. Henderson, A. C. Scabaugh, and J. Y. Yang, J. Crystal. Growth. 116, 436–446 (1992). - J. Osugi, R. Namikawa, and Y. Tanaka, Rev. Phys. Chem. Jpn. 37, (1967) 81–93; JJCPDS-ICDD No. 210353]. - S. Cho, S. Choi, G. B. Cha, S. C. Hong, Y. Kim, A. J. Freeman, J. B. Ketterson, Y. Park, and H. M. Park, *Soli. Stat. Commun.* 129, 609–613 (2004). - Y. Zhao W. T. Geng, A. J. Freeman, and T. Oguchi. Phys. Rev. B. 63, 201202-201201 (2001).