総合報告

光と磁気を取り巻く最近の進展と将来展望

佐藤勝昭

(独) 科学技術振興機構 さきがけ次世代デバイス研究総括

〒102-0076 東京都千代田区五番町7、K's 五番町

Recent Development and Perspective on Magneto-optics

Katsuaki SATO

Research Supervisor PRESTO Project "Next Generation Devices", Japan Science and Technology Agency (JST)

K's Gobancho bldg.. 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan

E-mail: katsuaki.sato@nifty.com

Synopsis

This paper provides a review on recent trends and future perspectives concerning magneto-optics. The first half will be dedicated to fundamental studies and the second half to introductory remarks on applied researches.

Keywords: Faraday effect, magneto-optical Kerr effect, nonlinear magneto-optics, near-field magneto-optical Kerr effect, X-ray magneto-circular dichroism

要旨

この報告では、はじめに、磁気光学効果の基礎を簡単に復習した後、非線形磁気光学効果、 近接場磁気光学効果、極短時間光磁気ダイナミクス、放射光を用いた磁気光学など光と磁 気を取り巻く最近の話題を述べ、将来への展望を述べる。

1. はじめに

磁気光学効果は 1845 年のファラデーの発見に始まり、その後、フォークト効果、磁気 光学カー効果など 19 世紀中に主な効果は出そろい現象論によって説明された。磁気光学 効果が量子力学によって説明されたのは 20 世紀も半ばになってからである。金属磁性体 の磁気光学効果のスペクトルは、現在では第 1 原理のバンド計算によってほぼ定量的に説 明されるようになった。磁気光学効果は、磁区イメージング、スピントロニクスにおける スピン注入の検証、超伝導体への磁束の侵入の観測など基礎科学を支える技術としても定 着している。磁気光学イメージングについては石橋氏の解説を参照されたい。

磁気光学効果の対象物質は、従来強磁性体に限られていたが、非線形磁気光学効果の登場により反強磁性体にまで広がった。一方、近接場磁気光学効果の登場は、磁気光学イメージングにおける空間分解能を飛躍的に向上した。また、フェムト秒レーザとポンプ・プローブ法の適用によって、時間分解能が大幅に向上した。これにより、超短時間の磁気ダイナミクスの研究が進展した。この過程で 40fs という短パルス円偏光レーザ光による非熱の高速磁化反転が見いだされた。放射光を利用した X 線磁気円二色性(XMCD)によって原子を特定して磁気モーメントを観測することが可能になった。さらに、自由電子レーザの出現により、反強磁性結合した磁気モーメントのダイナミクスも明らかになってきた。

応用的には、20世紀の末に、光磁気ディスクおよび光通信用アイソレータが登場した。 光磁気ディスクは、その後のハードディスクおよびフラッシュメモリの進展によって撤退 を余儀なくさせられたが、培われた技術は Tb/in²を超える超高密度ハードディスクの熱ア シスト記録方式として再び注目されている(松本氏の解説を参照)。光通信時代を迎え、ア イソレータは現在も活躍しており、光集積回路への導入が進められている(水本氏の解説 を参照)。また、磁気光学空間光変調器が飛躍的に進歩し、ホログラフィックメモリへの適 用が進められている(井上氏の解説を参照)。

この報告では、磁気光学の基礎を簡単に述べ、非線形磁気光学効果、近接場磁気光学効果、極短時間光誘起磁化ダイナミクス、放射光利用磁気光学効果などについて紹介する。

2. 磁気光学の基礎 1)

2.1 円偏光の伝搬と磁気光学効果

ファラデー効果は、ファラデー配置をとったときの物質の磁化に基づく旋光性(直線偏光の傾きが回転する効果)と円二色性(直線偏光が楕円偏光になる効果)の総称である. ファラデー効果は、磁化をもつ物質の左右円偏光に対する応答に違いがあるとき生じる.

Fig.1(a)に示すように直線偏光は右回り円偏光(以下では右円偏光と記す)と左回り円偏光 (左円偏光) に分解できる。この光が長さ ℓ の媒質を透過する際に,左右円偏光の速度が異なっておれば,透過した後の光の左右円偏光の位相には Fig.1(b)に示すようなずれが生じるので,両者を合成した軌跡は入射光の偏光方向から傾いた直線偏光となっている。その傾き $\theta_{\rm F}$ は

$$\theta_F = -\frac{\theta_R - \theta_L}{2} = -\frac{\Delta\theta}{2} \tag{1}$$

となる. ここに θ_R は右円偏光の位相, θ_L は左円偏光の位相, $\Delta\theta$ は位相差である.

一方、媒質を透過する際に、左右円偏光が受ける吸光度に違いがあると、媒質を通り抜けてきた左右円偏光には振幅の差が生じるので、その結果、Fig.1(c)のように合成した電界ベクトルの軌跡は楕円偏光となる。このようなわけで、直線偏光が楕円偏光になる効果を円二色性と呼ぶのである。楕円率角 η_F は、楕円の短軸と長軸との振幅の比の逆正接

$$\eta_F = \tan^{-1} \frac{|\hat{E}_R| - |\hat{E}_L|}{|\hat{E}_R| + |\hat{E}_L|}$$
(2)

で与えられる. $|\hat{E}_R|$, $|\hat{E}_L|$ は、それぞれ右円偏光と左円偏光の振幅の絶対値である. 楕円率角は通常非常に小さいので radian 表示でこれを楕円率とすることが多い.

ここで, あとの式の取り扱いを簡単にするために次式のように複素旋光角ΦFを定義する.

$$\Phi_F = \theta_F + i\eta_F \tag{3}$$

こうすると、式(1)と(2)をまとめて、

$$\Phi_F \approx i \frac{\hat{E}_R - \hat{E}_L}{\hat{E}_R + \hat{E}_L} \qquad (4)$$

と書くことができる.ここに \hat{E}_R および \hat{E}_L はそれぞれ右円偏光,左円偏光の複素振幅を表している.

いま,屈折率 n と消光係数 κ を一まとめとして複素屈折率 $\Delta \hat{N} = \hat{N}_+ - \hat{N}_-$ を導入する. 右円偏光および左円偏光に対する複素屈折率をそれぞれ \hat{N}_+ , \hat{N}_- とすると,(4)は次式のように書き換えられる.

$$\Phi_{F} = i \frac{\exp(i\omega \hat{N}_{+}\ell/c) - \exp(i\omega \hat{N}_{-}\ell/c)}{\exp(i\omega \hat{N}_{+}\ell/c) + \exp(i\omega \hat{N}_{-}\ell/c)} \approx -\frac{\omega(\hat{N}_{+} - \hat{N}_{-})\ell}{2c} = -\frac{\pi\Delta \hat{N}\ell}{\lambda}$$
(5)

ここに $\Delta \hat{N} = \hat{N}_{+} - \hat{N}_{-}$ である.このことから、物質中での光の複素屈折率が左右円偏光に対して異なっておれば、旋光性や磁気円二色性が生じることがわかる.

2.2 磁気光学効果と誘電率テンソル

左右円偏光に対する位相および振幅の変化は媒質の誘電率をテンソルとして扱い、磁化に比例する非対角成分の存在を仮定し、マクスウェルの方程式を解くことによって、説明することができる。

$$rot \ rot \ E(\omega) + \frac{\widetilde{\varepsilon}(\omega)}{c^2} \frac{\partial^2}{\partial t^2} E(\omega) = 0$$
 (6)

ここに $\widetilde{\epsilon}(\omega)$ は媒体の誘電率テンソルで、 z 方向に磁化された等方性物質については下記の形に書ける。

$$\widetilde{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0 \\ -\varepsilon_{xy} & \varepsilon_{xx} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{pmatrix}$$
 (7)

対角成分は、磁化 M について展開したとき偶数次のみが残り、非対角成分は磁化 M について奇数次のみが寄与する。z 方向に進む光についての複素屈折率 N の固有値は

$$N_{+}^{2} = \varepsilon_{xx} \pm i\varepsilon_{xy} \tag{8}$$

のように表される。正負の符号は、それぞれ右回りおよび左回りの円偏光に対応している。 もし、誘電率テンソルの非対角成分がなければ、式(3)は、左右円偏光に対して同じ光学定数を与え、従って磁気光学効果を起きない。

ファラデー回転角を実数部とし、ファラデー楕円率を虚数部とする複素ファラデー回転 ΦFは誘電率テンソルの要素を用いて

$$\Phi_F = -\frac{\pi \Delta N \ell}{\lambda} = -\frac{i\pi \ell}{\lambda} \cdot \frac{\mathcal{E}_{xy}}{\sqrt{\mathcal{E}_{xx}}}$$
(9)

のように書くことができる。一方、極カー効果については、次式のように書き表される。

$$\Phi_K \approx \frac{\varepsilon_{xy}}{(1 - \varepsilon_{xx})\sqrt{\varepsilon_{xx}}} \tag{10}$$

式(9)(10)からわかるように、磁気光学効果は媒体の誘電率の非対角成分だけでなく、対角成分にも関係していることがわかる。従って、多層化などによって実効的に誘電率を変えることができれば、磁気光学効果を大きく変化することができる。特に、極カー効果の式(10)の分母に 1-ɛ,, を含むことから、プラズマ共鳴によるカー効果の増強が説明される。

2.3 磁気光学効果の電子論

磁気光学効果をもたらす誘電率テンソルの非対角成分は、量子力学によれば式(11)のように物質の電子構造に結びつけられる。

$$\varepsilon_{xy} = -\frac{iNe^2}{2m\varepsilon_0} \sum_{n < m} (\rho_n - \rho_m) \frac{\omega_{nm} \{ (f_+)_{mn} - (f_-)_{mn} \}}{\omega \{ \omega_{mn}^2 - (\omega + i\gamma) \}}$$
(11)

ここに、 $(f_+)_{nm}$ および $(f_-)_{nm}$ はそれぞれ右回り円偏光および左回り円偏光に対する状態 |n> と状態 |m>の間の電気双極子遷移の振動子強度を表している。また ω_{nm} は両状態のエネルギー差である。

いま、Fig.2(a)のような単純なエネルギー準位図を考える。磁化の存在のもとでは、ゼ

ーマン項によって(b)のように基底状態、励起状態のスピン分裂が生じるが、電気分極の起源として電気双極子を考える限り、これだけでは磁気光学効果に結びつかない。スピン軌道相互作用が存在すると、(c)に示すようにスピンの分裂が軌道の分裂に結びつき、左右円偏光に対する遷移の差が生じる。このような場合の誘電率の非対角成分の実数部 ϵ'_{xy} と虚数部 ϵ''_{xy} のスペクトルは Fig.3 に示すような形状を示す。

このときの誘電率テンソルの非対角成分の虚数部のピーク値は、

$$\left. \varepsilon_{xy}^{"} \right|_{peak} = \frac{Ne^2 f \,\Delta}{4m\varepsilon_0 \omega \gamma^2} \tag{12}$$

と表され、振動子強度fが高く、スピン軌道相互作用 Δ が大きいとき、磁気光学効果が大きな値をとるということがわかる。

3. 非線形磁気光学効果 2)

これまで述べた磁気光学効果は線形の効果、つまり、入射光と同じ波長の出射光についての磁気光学的応答を扱ってきた。これに対して磁性体に誘起された非線形分極によって発生した高調波の出射光についての磁気光学応答が非線形磁気光学効果である。主として高調波のうち第2高調波発生(SHG)についての研究が進められている。

波動方程式は、表面に非線形分極 $P^{(2)}(2\omega)$ が存在してこれがソース項として働くと考えて、式(9)を拡張して、次式のように表すことができる.

$$rotrotE(2\omega) + \frac{\tilde{\varepsilon}}{c^2} \frac{\partial^2}{\partial t^2} E(2\omega) = -\frac{1}{\varepsilon_0 c^2} \frac{\partial^2}{\partial t^2} P^{(2)}(2\omega)$$
 (13)

ここに $P^{(2)}(2\omega)$ は入射光の電場 $E(\omega)$ によって磁性体に誘起された非線形分極で、電気双極子の範囲では

$$P_{i}^{(2)}(2\omega) = \chi_{ijk}^{(2)}(2\omega\omega\omega)E_{i}^{(1)}(\omega) \cdot E_{k}^{(1)}(\omega)$$
(14)

のように表される. $E_j^{(1)}$, $E_k^{(1)}$ は 1 次光の電界の j, k 成分、 $\chi_{ijk}^{(2)}ig(2\omega;\omega,\omegaig)$ は 2 次の非線形感

受率テンソルである。また、この式において繰り返される添え字については和をとるというテンソル演算の約束に従う。よく知られているように Fe, Co など中心対称性をもつ物質においては、3 階のテンソルは 0 となるため、 $P^{(2)}(2\omega)$ は存在しないので SHG は起きない。しかし、表面・界面においては、中心対称が破れているので SHG を観測することができる $^{3)}$ 。つまり、非線形分極は界面にのみ形成される.

いま、Fig.4の配置を考える。P偏光の 1 次光を入射したとき、出射 SH 光の偏光方向は、入射光の偏光方向 P から傾いて S 成分をもつが、磁化の向きを変えると偏光方向は P 面について対称に向きを変える。S 偏光入射の場合も同様に出射光には P 偏光成分が生じ、磁化反転により S 面に対称に向きを変える。この効果を非線形磁気カー効果(NOMOKE)という。

複素非線形カー回転角 $\Psi_{\kappa}^{(2)}$ を非線形感受率テンソル $\chi^{(2)}$ の成分を使って表すと、

$$tan\Psi_{K}^{(2)} = i \left(\frac{\chi^{(2)odd}}{\chi^{(2)even}} + 高次項 \right)$$
(15)

のように表すことができる 4 . ここに $\chi^{(2)\text{even}}$ および $\chi^{(2)\text{odd}}$ は, $\chi^{(2)\pm}=\chi^{(2)\text{even}}\pm i\,\chi^{(2)\text{odd}}$ と表したときの実数部と虚数部で, $\chi^{(2)\text{even}}$ は磁化 M について偶,後者は M について奇である. M の 1 次までを考えると、 $\chi^{(2)\text{odd}}$ のみが磁化による影響を受ける。

Fig.5 に示すように、非線形カー回転は入射角を小さくするとともに増大し、90°近くにも達することが報告されている 5)。Fe の線形の縦磁気カー回転はせいぜい 0.1°程度であるから、非線形磁気カー回転角は桁違いに大きい。

線形の場合の磁気カー効果は式(10)のように分極率テンソルの非対角成分 $\chi_{xy}=\epsilon_{xy}$ と対角成分 $\chi_{xx}=1-\epsilon_{xx}$ の比で与えられており、一般にこの比は 1 よりかなり小さい。これに対し、非線形カー回転は式(15)に示したように $\chi^{(2)odd}/\chi^{(2)even}$ という比で与えられ、この項は同程度のテンソル要素同士の比であるため、回転角が大きいと考えられる。もう1つは、線形のカー回転の式には $1/\sqrt{\epsilon_{xx}}$ の因子がかかることによって $\Psi_{\mathbf{K}}^{(1)}$ を小さくしているのに対し、

非線形カー回転の式にはこのような因子が存在しないことである。これは、非線形磁気光学効果が、線形の場合のように左右円偏光に対する屈折率の差から生じるのではなく式 (13)のソース項である界面の非線形分極 $P^{(2)}(2\omega)$ から生じていることに原因していると考えられている。

先に述べたように、この効果は中心対称をもつバルクでは弱く、対称性の破れる表面界面で強く現れるので、磁性/非磁性人工格子の表面・界面の磁性の評価にも用いることができ、磁性人工格子の研究に欠くことのできない技術になりつつある⁶。

線形磁気光学効果は、反強磁性体では逆方向の磁化成分による磁気光学効果が打ち消しあうため観測されないのに対し、非線形磁気光学効果は有限の値をもつことが報告されている。Fig. 6 は、Fiebig らが報告する反強磁性体 Cr_2O_3 の SHG 強度の温度依存性である $^{7)}$ 。 ネール温度 (T_N) 以下では SHG 強度は左右円偏光に対し異なるが、 T_N 以上では一致する。反強磁性ベクトルの異なる磁区では、左右の応答は逆転する。

反強磁性体の非線形磁気光学スペクトルは Tanabe らにより磁気点群を考慮した理論によって説明された $^{8)}$ 。

4. 近接場における磁気光学効果

4.1 近接場とは 9)

従来の光学においては電磁波の伝搬を考えるに当たり、波長より大きなスケールでの物質の光学応答を均質なものとみなし、誘電率という平均的な量を使うので、物質の部分系と光のミクロな電磁相互作用を取り扱わない。物質の光学応答は、光の波長のスケールで平均化されたものであり、空間的スケールは波長程度の領域にとどまる。このため、干渉効果をどのように利用しても波長の数分の1程度以下の空間に収束することができない。これを光波の回折限界と呼ぶ。

これに対して、近接場光は、あらゆる相互作用にともなう物質近傍での光の場を含んで おり、空間的なサイズは、着目している物質の空間的な広がりと、プローブと物質との距 離のみに依存し、観測波長に依存しないので、通常の光学のような空間的細かさの制限(回折限界)はない。ただし、原子スケールに近づくと、電子の波動関数の広がりを観測することとなって、光の場と物質とを切り離すことができなくなる。

波長よりはるかに微小な物質の近傍には、空間周波数の高い電磁場分布があるが、この場はエバネッセント場と呼ばれ、物質から遠ざかると指数関数的に減少してしまう。従って、2つの微小物体を光波長よりも遙かに短い距離に置くと、それぞれの物体の近傍にある2つの近接場によって物体間に相互作用(エバネッセントカップリング)が生じる。一方の物体が光源であり、他方が検出器であれば、物体間での電磁エネルギーの移動がおきる。これは、物体間での光励起のトンネル現象と見ることができる。

4.2 近接場の発生と検出

Fig. 7に示す全反射光学系において、屈折率 nの大きな媒体 2 から n の小さな媒体 1 へと光が入射した場合、入射角が臨界角 θ_c よりも大きいときに媒体 1 側において界面から垂直方向に指数関数的に急激に減衰する伝搬しない波(エバネッセント波)が存在する。この光の場を近接場という。この場の中に物体を置くと散乱された光は伝搬する波に変換され観測できるようになる。全反射面に Ag 薄膜をコーティングすることによって、表面プラズモンとの結合によるエバネセント波の増強が行われるので、波長以下の微小な試料の顕微鏡観察によく利用されている。

4.3 近接場顕微鏡

光ファイバーを用い、その先端にテーパーをつけ微小開口を作るとエバネッセント光ができる。これを模式的に表したのが Fig.8 である。エバネセント光の近接場の中に観測したい対象を置くと、光は散乱され、伝搬する波となって放射する。この光を検出することによって光の回折限界を超える微小物体を観測することができる。プローブの位置を STM などと同様のマイクロアクチュエータにより制御することにより画像化する。これが Fig.9(a)の照射モードの走査型近接場顕微鏡(SNOM)である。偏光を入射し、磁性体で磁気

光学効果を受けるので検光子を通して観測すれば回折限界以下の領域の磁気光学効果が測定できる。テーパー付きファイバーを全反射光学系と組み合わせ散乱光検出に用いることもできる。これが Fig.9(b)の集光モード SNOM である。

Betzig らは、1991年光ファイバーをテーパー状に細めたプローブから出る近接場光を用いて回折限界を超えた光磁気記録ができること、および、このプローブを用いて磁気光学効果による読み出しができることを明らかにし、将来の高密度記録方式として近接場光がにわかに注目を浴びることになった ¹⁰⁾。同時に Betzig は超微細加工した金属細線リングの偏光像を観察することに成功し ¹¹⁾、磁気光学顕微鏡として利用できることを明らかにした。

Betzig 以後も SNOM を微小領域の磁性の観測に用いる試みはいくつかの機関で行われたが、光ファイバーに偏光を通すことの難しさからあまり報告例がなかった。筆者らは、Fig.10 のようなベント型光ファイバープローブを原子間力顕微鏡(AFM)の探針として用いる照射モードの近接場磁気光学顕微鏡(MO-SNOM)技術を開発し、光磁気記録された記録マークを 100 nm の分解能で観察することに成功した ¹²⁾。斎木らは、照射・集光モードを使った SNOM によって YIG の磁区の磁気光学像を観察している ¹³⁾。

4.4 熱アシスト磁気記録用の近接場光源

1Tb/in2を超える高密度磁気記録においては、磁化の熱揺らぎによる減磁が記録密度の限界を決めると言われる。この問題を克服するため磁気異方性の大きな垂直磁気材料を用いると磁気ヘッドからの磁界のみでは磁化反転が困難になる。そこで近接場光による加熱で保磁力を下げて磁気記録をする熱援用記録(HAMR)が研究されている。

近接場発生方法として、金属で光学素子を覆い、その金属に波長よりかなり小さな開口を設ける方法により微小光スポットが得られる。微細孔は金属をFIB 加工することによって得られる¹⁴⁾。この方法により得られる光のスポットではエネルギー密度を大きくできないという問題点がある。これを解決し強いエネルギーの微小な光スポットを得る方法が、プラズモンによるエンハンスメントである。Ebbesenらは、微小開口の周りに同心円状に配置した金属リングによりプラズモンエンハンスメントで入射光より強い光が透過すること

を示した¹⁵⁾。半導体レーザ自体に金属マスクをつけ微細開口を開ける試みも行われている
16)。

近接場光のエネルギー密度を増強するもう1つの方法が、Grober らによって提唱されたボウタイ(蝶ネクタイ)型アンテナによる電磁場の集中である¹⁷⁾。Grober らは、マイクロ波周波数に対しFig.10に示すようなボウタイアンテナの中心部に電界の集中が起きることを検証し、光の周波数に対しても使用できると提案した。松本らは、電磁界計算を行い、ボウタイアンテナのギャップ程度の領域に光強度が集中していることを明らかにしている¹⁸⁾。この発展形として、Fig.11に示すようなナノビークアンテナが提案されている¹⁹⁾。これは、ボウタイの半分を使い先端をクチバシ状にとがらしたものである。

5. 光と磁気の極短時間ダイナミクス

5.1 ポンプ・プローブ法による超高速磁化ダイナミクス測定

磁化の超高速時間応答計測には、「ポンプ・プローブ法」が用いられる。高強度超短パルス光照射によって、磁化あるいは磁気異方性を超短時間の間に変化させ、磁性体中に歳差運動を励起する。歳差運動のダイナミクスは、ファラデー効果を用いてフェムト秒時間分解能で測定する。光源には、モードロックチタンサファイヤレーザーと再生光学増幅器を用いる。レーザ光は、歳差運動の励起に用いる高強度ポンプ・パルス光と、続く磁化応答計測に用いる強度比約 1/100 のプローブ・パルス光に分ける。ポンプ光を照射してからプローブ光により磁化状態を測定するまでの遅延時間を徐々に変え、測定を繰り返すことにより極短時間磁化応答の実時間計測が可能となる。

ポンプ光スポットサイズに比べスポットサイズの小さなプローブ光を用いることによって、一様に励起された領域の観察を行う。ファラデー回転角は、試料を通過したプローブ光に対し差動ダイオード検出法を用いて測定する。

ー例として、Fig.12 に Stanciu らが報告するアモルファス GdFeCo 薄膜の光励起後の磁化の面直成分の時間変化を示す $^{20)}$ 。試料には外部磁界 H_{ext} を膜面法線より 60° の方向に

印加しておく。ポンプ光照射(幅 100fs)による急速加熱により、はじめに磁化の減少に伴う 形状磁気異方性 H_a の変化が生じ、次いで磁気異方性 H_s の変化が起き、結果として有効磁 界 $H_{eff} = H_{ext} + H_a + H_s$ の変化が起きる。この磁界により磁化は、はじめの面直方向から準 平衡状態の傾きへと急峻に変化することで歳差運動が励起される。ファラデー効果は磁化 に垂直な成分を観察しているので歳差運動している磁化の面直成分が観測されている。

塚本らは、Fig.13 に示すように、磁化補償点付近の組成をもつ $Gd_{24.5}Fe_{66.1}Co_{9.4}$ 膜において、励起パワーを上げることによって 2ps という超短時間で磁化が反転し、歳差運動をすることを見いだした 21)。これは、急速加熱で磁化補償点を超え角運動量補償点に近づくとダンピングが強まって、急峻にスイッチすると解釈されている。

5.2 熱に依らない光誘起高速磁化反転の観測

ファラデー効果は、磁化の存在によって左右円偏光に対する光学応答に位相差が生じる ことによって起きるが、逆に円偏光を加えることによって、物質に実効的な磁界を誘起す ることができる。これを**逆ファラデー効果**という。

ファラデー回転を与える式(9)において、 ΔN をMで展開すると、近似的に

$$\Phi_F = -\frac{2\pi\ell}{\lambda} \frac{\alpha_F \mathbf{M}}{\varepsilon_0}$$

と書ける。ここに α_F は磁気光学感受率である。逆ファラデー効果は α_F を用いて

$$H(0) = \frac{\mathcal{E}_0}{\mu_0} \alpha_F [E(\omega) \times E^*(\omega)] \tag{16}$$

と表される。ここで $E(\omega)$ 、 $E^*(\omega)$ は、それぞれ入射光の電界およびその複素共役である。式(16)は、円偏光による励起と外部磁場印加が等価であり、左右円偏光によりそれぞれ逆向きの磁化を誘起することを示す。ファラデー効果と逆ファラデー効果は、同じ磁気光学感受率 α_F によって決定されるのであるから、ファラデー効果の大きな物質を使えば、光による高速磁化反転が期待される。本効果は、光吸収過程を必要とせず、光による磁化への効果が非熱的に生じるという特徴がある 22)。

Fig.14 は、時間幅 40 fs の円偏光レーザ・パルス光を高速に走査し(約 50 mm/s)、個々のパルス光が試料表面上で異なる位置を照射するようにして同様の実験を行ったときの磁区像である。図に示すように、右円偏光 σ ⁺を照射した場合、下向き磁区の領域では磁化反転を生じるが、上向き磁区の領域には影響せず、一方、左円偏光 σ ⁻の際には逆の関係が観察される。単一レーザ・パルス光が試料と作用している 40fs の時間にフォトンの角運動量情報は磁性材料に伝達され、円偏光のヘリシティに対応した光誘起磁化反転が生じることが示された。

6. 放射光を用いた磁気光学効果

6.1 XMCD

シンクロトロン放射光を用いた分光研究の特徴は、内殻に関係した光学遷移を観測できることである。強磁性体を構成する原子の X 線吸収端付近の吸収スペクトルを左右円偏光で測定し、その差をとると磁気円二色性(XMCD と略称)が見られる。XMCD スペクトルは特定の原子の位置における局所的な磁気モーメントのプローブとして用いることができる。X 線吸収端は、内殻からフェルミ準位の上の空いた状態への遷移によって起きる。3d 遷移金属の場合 L 殻(2p)から 3d 軌道への双極子許容遷移が、4f 希土類の場合 M 殻(3d)から 4f 軌道への双極子許容遷移が使われる。3d 遷移金属の L_{23} 吸収および 4f 希土類の M_{54} 吸収はいずれも 1500eV 以下の軟 X 線領域に現れる。XMCD に総和則を適用することによってスピン磁気モーメントと軌道磁気モーメントを分離することができる。

Fig.15 は Fe(2ML)/Ni(6ML)/Pd 多層膜(ML=単原子層)における FE および Ni の L_{23} 吸収端の円偏光 X 線吸収(XAS)スペクトルおよび左右円偏光の XAS の差分をとった X 線円二色性(XMCD)スペクトルである。これより Fe と Ni のスピン磁気モーメントはそれぞれ $2.588\mu_B$ 、 $0.736\mu_B$ であること、軌道磁気モーメントの垂直成分はそれぞれ 0.343、 0.127 であることなどが求められている 23 。

6.2 XMCD 顕微鏡

XMCD を用いた磁気光学顕微鏡が開発されている。 X 線領域で X 線ビームを集光するためにフレネル帯板の一種であるコンデンサ・ゾーン・プレート(CZP)を用いた。これによってサブミクロンのサイズにまで集光することが可能となっている。 Fig.16 は透過型 X 線顕微鏡で観察した光磁気ディスクの磁区パターンである。 $25 \, \mathrm{nm}$ という高分解能が得られている。

6.3 X 線自由電子レーザー(XFEL)による磁化ダイナミクスの観測

X線自由電子レーザー(XFEL)とは電子をほぼ光速に加速し、アンジュレーターで電子を蛇行させて放射光を発生・増幅し、X線領域の電磁波を発振するレーザーである。これを用いると、光励起後の磁化のダイナミクスを原子を特定して観測することができる。例えば、アモルファス GdFe 薄膜においては、Gd と Fe の磁気モーメントは、反強磁性的に結合しているが、パルスレーザー(60 ns, hv=1.55 eV)による急速加熱後の磁化の時間的変化を軟 X線自由電子レーザー(100 fs)で原子を特定して 100 ないので原子を特定して 100 ないので原子を特定して 100 ないので原子を特定して 100 ないので原子を特定して 100 ないので原子を特定して 100 ないので見る。このため、Fig. 100 たったに起きたのち、100 の磁化反転が時定数 100 が、で起きる。このため、一時的には、100 を 100 を

7. ナノスケールの構造がもたらす光と磁気

磁気光学効果の舞台となる物質のサイズが、ナノスケールになるとどのようなことが起きるであろうか。電磁波の波長よりも十分に小さいサイズの構造をもつ媒質に入射した電磁波は平均した誘電率と透磁率を感じる。媒質が磁性体/貴金属の多層膜または貴金属/磁性体/貴金属サンドイッチ膜においては、それぞれの層が十分厚ければ貴金属のバルクプラズモンのために誘電率の対角成分が負から正に変化するとき磁気光学効果がエンハンスされる効果が現れることが、1980年代に明らかにされた²⁵⁾。その後、原子層オーダーで制御された磁性体の超薄膜を貴金属でサンドイッチした構造において新たな遷移が生じることが見出され²⁶⁾、さらに精密な実験によってこの遷移が磁性

体層厚に依存することが明らかになった²⁷⁾。さらに人工格子において組成変調周期を 短くしていくと、新たなバンド構造が出現し、特有の磁気光学スペクトルが観測される 28)。

一方、媒質が貴金属微粒子の分散系、例えば、Au 微粒子分散 YIG 薄膜においては、Au 微粒子の表面プラズモンによる磁気光学効果のエンハンスがおきる ²⁹⁾。また、Abe らは、玉ねぎ構造微粒子に関する電磁ポテンシャル問題を quasi-static 近似で解き、ナノオニオンを母体中に分散させた結合媒体の光学的性質と磁気光学効果を与える有効 誘電率テンソルの理論式と Maxwell-Garnett 平均場近似法によって導き出した。Fe/Au ナノオニオン分散媒体では、Au のプラズマ共鳴によって磁気光学効果の特異な分散関係が現れることを計算機シミュレーションで示した ³⁰⁾。

誘電率、透磁率ともに負であるような系は「左手系」³¹⁾と呼ばれ、このような系に電磁波が入射した場合、異常な光の伝搬現象が期待される。自然界にはこのような系は存在しないが、人工的に電磁波の波長より小さい金属と誘電体の複合構造が周期的に配置された物質(メタマテリアル)が、マイクロ波や赤外線領域で左手系の性質を示すことが示されている自然界には左手系物質は存在しないが、メタマテリアルの概念を用いて構成可能であることが実証されている³²⁾。当初のものは、スプリットリング共振器とワイヤ共振器を用いて構成されたが、動作帯域も狭く、損失も大きなものであった。Caloz らは、非共振型の左手系メタマテリアルの構成法を提案、広帯域性・低損失性のゆえ工学的応用への期待が高まっている³³⁾。Sanada らは、バランス型右手左手複合系伝送線路(CRLH)をもちいて、応用上重要な結果を得ている³⁴⁾。

フォトニック結晶は、1次元、2次元、3次元の周期的な変調を誘電率に付与した人工物質である。光の波動に対するバンドギャップが生じるために特定の波長範囲の光を完全に遮断する。この周期構造を何らかの形で乱すと、半導体の不純物準位に相当する局在状態が生じ、特定波長を透過するようになる。この不純物として磁性体を使うと、磁気光学効果を特定波長でエンハンスできる。これを磁性フォトニック結晶と呼んでいる。井上ら

は、 SiO_2/Ta_2O_5 誘電体多層膜と Bi 添加 YIG 不純物層からなる 1 次元フォトニック結晶を作製し、誘電体多層膜フォトニックバンドギャップの中に不純物層による透過帯が現れ、磁気光学効果がエンハンスされることを見出した 35)。最近、磁性フォトニック結晶を強誘電体と積層することによって電界制御で磁気光学効果を変調することに成功している 36)。

8. おわりに一光と磁気の将来展望一

現在、光と磁気のかかわる現象の舞台は、測定に使われる技術の進展により、空間的にはナノスケールで原子特定、時間的にはフェムト秒、波長領域は、THzから赤外・可視・紫外・極紫外・軟 X 線・硬 X 線と広がり、対象も、バルク結晶・薄膜結晶・薄膜アモルファス・多層粒子・微粒子分散系・人工格子・フォトニック結晶・メタマテリアル・・と非常に広範囲になっている。磁性現象も、新しい道具立てを用いることによって、強磁性・フェリ磁性だけでなく、反強磁性、さらには、スピン注入された非磁性体にまで広がってきている。

今後、材料的には、マルチフェロイック材料、トポロジカル絶縁体、有機・分子材料など、これまで対象になっていなかった領域にも広がっていくものと考えられ、空間的には微細なものだけでなく。宇宙スケールにおける光磁気現象にまで拡大するのではないかと考えている。そこには今までの物理の道具立てでは扱えない新たな物理が潜んでいるかもしれない。

参考文献

- 1. 佐藤勝昭:「光と磁気 改訂版」(朝倉書店,2001)
- 2. 佐藤勝昭:「新しい磁気と光の科学」(講談社サイエンティフィク,2001) 第6章
- 3. Y.R. Shen: The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984.)
- 4. U. Pustogowa, W. Hübner, K.H. Bennemann: Phys. Rev. **B49** (1994) 10031
- 5. Th. Rasing, M. Groot Koerkamp and B. Koopmans: J. Appl. Phys. 79, 6181 (1996)
- Th. Rasing: "Nonlinear magneto-optical studies of ultra-thin films and multilayers",
 Nonlinear Optics at Metallic Interfaces, ed. K.H. Bennemann (Oxford Univ. Press, Oxford, 1997)
- 7. M. Fiebig, D. Fröhrich, G. Sluyterman, R.V. Pisarev: Appl. Phys. Lett. 66, 2906 (1995)
- 8. Y. Tanabe, M. Fiebig, and E. Hanamura: Magneto-Optics, Ed. S.Sugano and N.Kojima, (Springer, Berlin, 1999) Chap.4, p.107
- 9. 堀裕和、井上哲也:「ナノスケールの光学-ナノ光科学の電磁気的基礎-」(オーム 社、2006)
- E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder and C.-H. Chang: Appl. Phys. Lett. 61, 1432 (1992)
- 11. E. Betzig, J.K. Trautman, J.S. Weiner, T.D. Harris and R. Wolfe: Appl. Opt. 31, 4563 (1992)
- 12. 佐藤勝昭:固体物理 34, 681(1999)
- 13. 斎木敏治、戸田泰則:「ナノスケールの光学-ナノ光科学の電磁気的基礎-」(オーム社、2006) p.128.
- T.E. Schlesinger, T. Rausch, A. Itagi, J. Zhu, J.A. Bain, D.D. Stancil: Jpn. J. Appl. Phys.
 41, 1821 (2002).

- 15. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T.Thio and P.A.Wolff: Nature 391, 667 (1998).
- Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh: Appl. Phys. Lett. 75, 515 (1999).
- 17. R.D. Grober, R.J. Schoelkopf, D.E. Prober: Appl. Phys. Lett. **70** 1354. (1997)
- 18. T. Matsumoto, T. Shimano and S. Hosaka, Technical Digest of 6th Int. Conf. Near Field Optics and Related Techniques, the Netherlands, Aug. 27-31, 2000, p55
- 20. C. D. Stanciu, F. Hansteen, A.V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk and Th.Rasing: Phys. Rev. **B** 73, 220402(R) (2006).
- 21. Tsukamoto, T.Sato, S.Toriumi, A.Itoh: Appl. Phys. 109, 07D302 (2011)
- 22. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, Th. Rasing Nature (London) 435, 655 (2005).
- 23. Yamamoto, T.Nakagawa, Y.Takagi, T.Yokoyama: Phys. Rev. B 81, 214442 (2010)
- 24. Rudi et al. Nature Letter 472, 205 (2012)
- 25. Sato, H.Kida and T.Katayama: Jpn. J. Appl. Phys. 27, L237 (1988).
- 26. Y. Suzuki, T. Katayama, S. Yoshida, K. Tanaka and K. Sato: Phys. Rev. Lett. 68, 3355 (1992)
- 27. 鈴木義茂、片山利一: 応用物理 63, 1261 (1994)
- 28. K. Sato, E. Takeda, M. Akita, M. Yamaguchi, K. Takanashi, S. Mitani, H. Fujimori, Y. Suzuki: J. Appl. Phys. **86**, 4985-4996 (1999)

- 29. S. Tomita, T. Kato, S. Iwata, S. Tsunashima, M. Fujii, S. Hayashi: Phys. Rev. Lett. 96, 167402 (2006)
- 30. Abe and T. Suwa: J. Appl. Phys. 97, 10M514 (2005).
- 31. V.G. Veselago: Soviet Physics Uspekhi, 10, 509 (1968)
- 32. D.R. Smith et al.: Phys. Rev. Lett. **84**, 4184 (2000)
- 33. Caloz, Itoh: IEEE-APS Int'l Conf. Digest 2, 412, 2002
- 34. Sanada, C. Caloz and T. Itoh: IEEE Microwave and Wireless Component Lett., **14**, 68 (2004)
- 35. M Inoue, R Fujikawa, A Baryshev, A Khanikaev, P B Lim, H Uchida, O Aktsipetrov, A Fedyanin, T Murzina and A Granovsky: J. Phys. D: Appl. Phys. **39**, R151 (2006).
- 36. T. Goto, H. Sato, H. Takagi, A. V. Baryshev and M. Inoue: J. Appl. Phys., **109**, 07B756 (2011).

Figure Captions

- Fig. 1 円偏光の伝搬と磁気光学効果
- Fig. 2 交換分裂とスピン軌道相互作用を考慮した電子状態と円偏光選択制
- Fig. 3 2 遷移型磁気光学スペクトル
- Fig. 4 縦カー配置
- Fig.5 Fe の非線形磁気カー回転角の入射角依存性
 - (▲Fe/Cr, ●Fe/Au, ■キャップなし Fe 表面)
- Fig. 6 反強磁性体 Cr2O3 の第 2 高調波強度の温度依存性 (■右円偏光、□左円偏光)
- Fig.7 全反射光学系におけるエバネセント波
- Fig. 8 微小開口を用いたエバネセント波の発生
- Fig. 9 テーパー付き光ファイバーによる近接場顕微鏡
- Fig.10 ベントファイバープローブとこれを用いて観測した光磁気記録パターンの SNOM 像
- Fig. 10 ボウタイアンテナ
- Fig. 11 ナノビークアンテナ
- Fig. 12 GdFeCo 薄膜におけるフェムト秒パルス光照射後の磁化の z 成分の時間変化
- Fig. 13 Gd_{24.5}Fe_{66.1}Co_{9.4}における磁化ダイナミクスの励起レーザーパワー依存性
- Fig. 14 シングルショット円偏光パルス光 (2.9mJ/cm²) を高速走査 (50 mm/s) したとき の磁区像
- Fig. 15 Fe(2ML)/Ni(6ML)/Pd 膜における原子特定円偏光 XAS および XMCD スペクトル
- Fig. 16 透過型 X 線顕微鏡で観察した光磁気ディスクの磁区パターン
- Fig. 17 XFEL を用いて測定した GdFe における原子特定磁化ダイナミクス

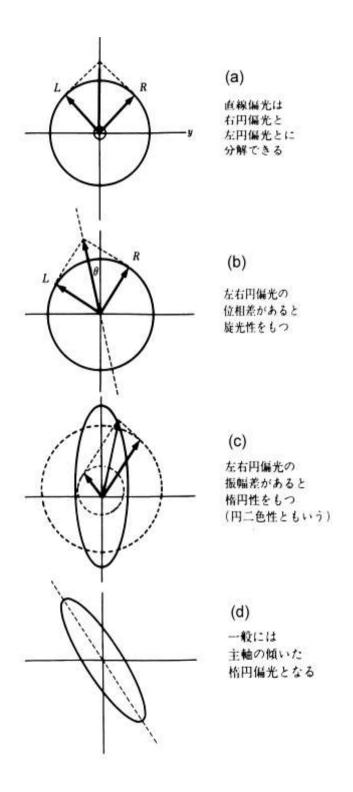


Fig. 1 円偏光の伝搬と磁気光学効果

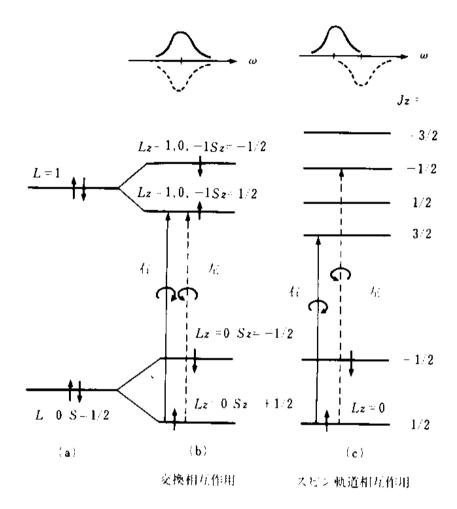


Fig. 2 交換分裂とスピン軌道相互作用を考慮した電子状態と円偏 光選択制

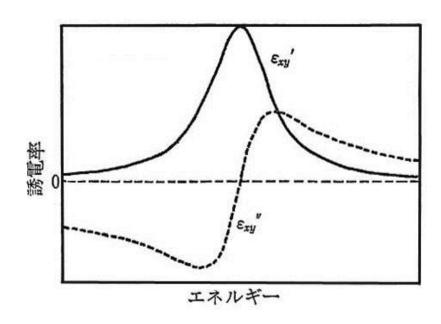


Fig. 3 2遷移型磁気光学スペクトル

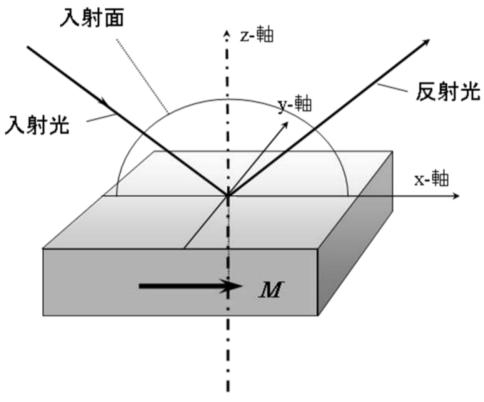


Fig. 4 縦カー配置

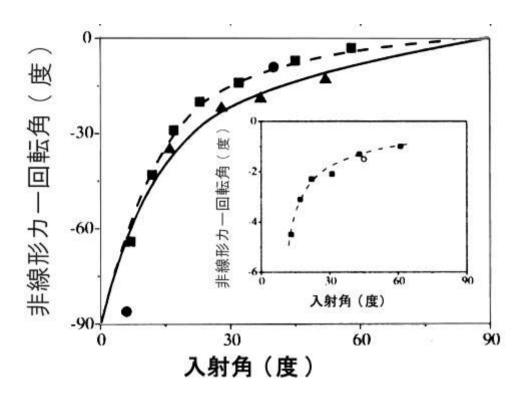


Fig.5 Fe の非線形磁気カー回転角の入射角依存性 ▲Fe/Cr, ●Fe/Au, ■キャップなし Fe 表面

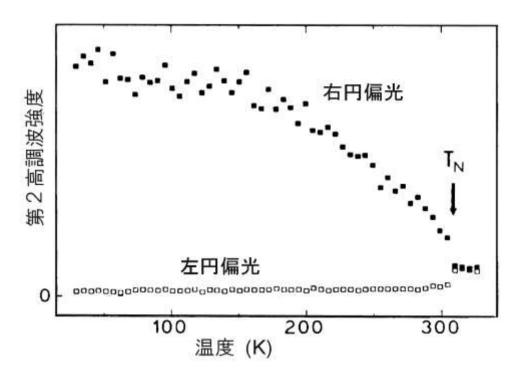


Fig. 6 反強磁性体 Cr2O3 の第 2 高調波強度の温度依存性(■右円偏光、□左円偏光)

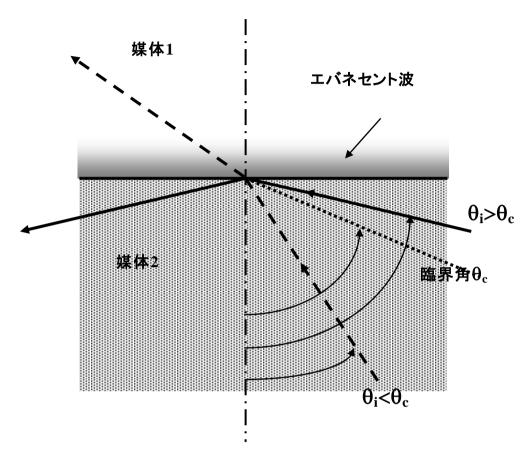


Fig.7 全反射光学系におけるエバネセント波

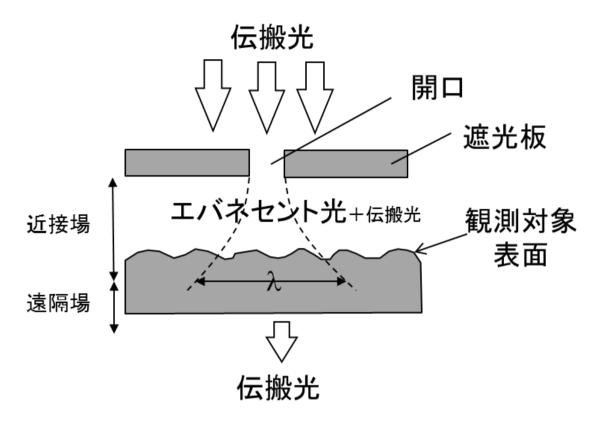


Fig. 8 微小開口を用いたエバネセント波の発生

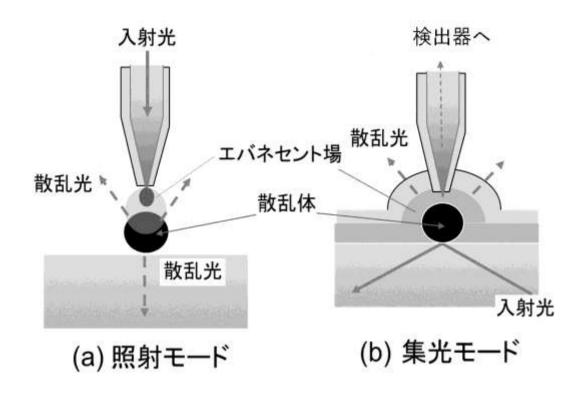


Fig.9 テーパー付き光ファイバーによる 近接場顕微鏡

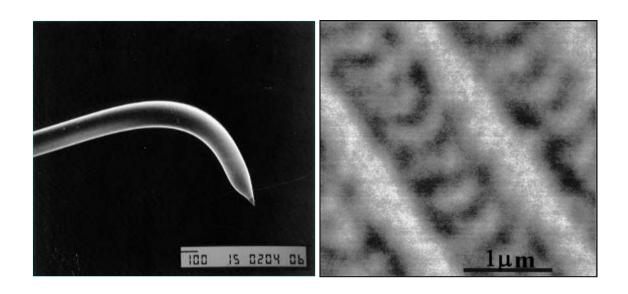


Fig.10 ベントファイバープローブとこれを用いて観測した光磁気記録パターンの SNOM 像

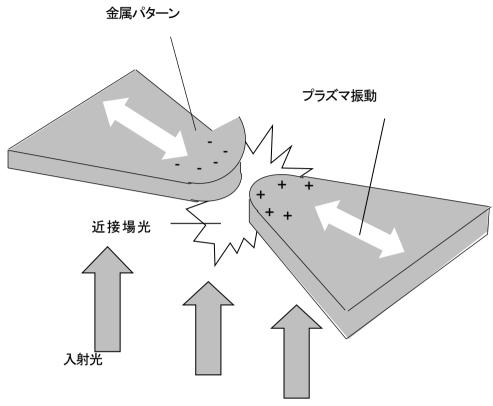


Fig. 10 ボウタイアンテナ

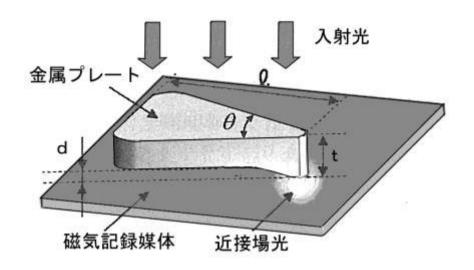


Fig.11 ナノビークアンテナ

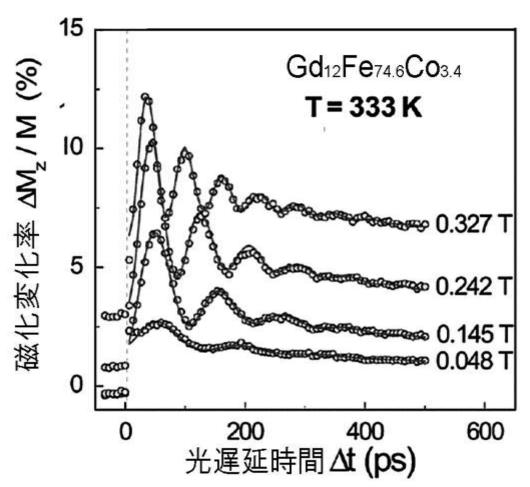
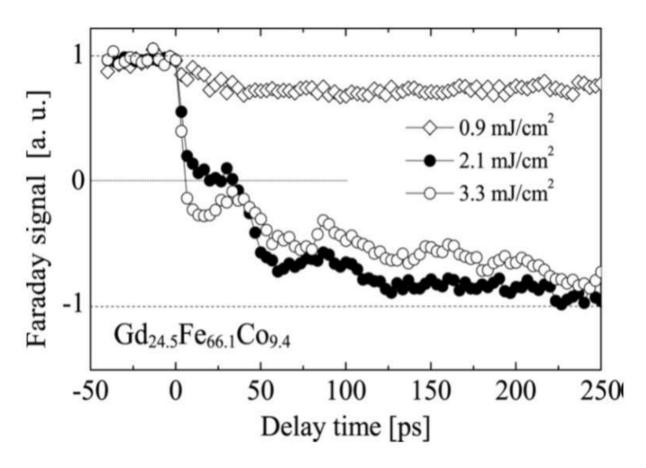



Fig.12 GdFeCo 薄膜におけるフェムト秒パルス光照射後の磁化の z 成分の時間変化

 $Fig.13~Gd_{24.5}Fe_{66.1}Co_{9.4}$ における磁化ダイナミクスの励起レーザーパワー依存性

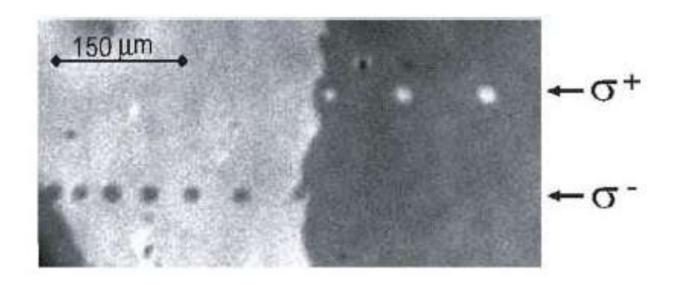


Fig.14 シングルショット円偏光パルス光(2.9mJ/cm²)を高速走査 (50 mm/s) したときの磁区 像

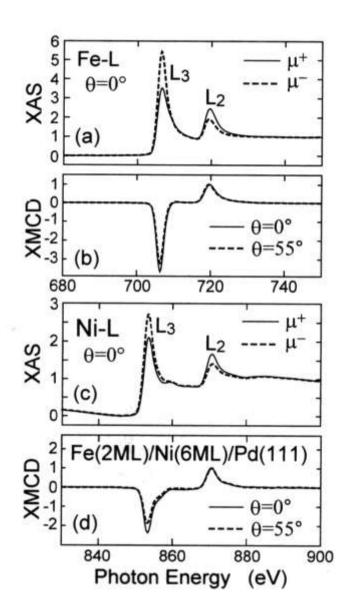


Fig.15 Fe(2ML)/Ni(6ML)/Pd 膜における原子特定円偏光 XAS および XMCD スペクトル

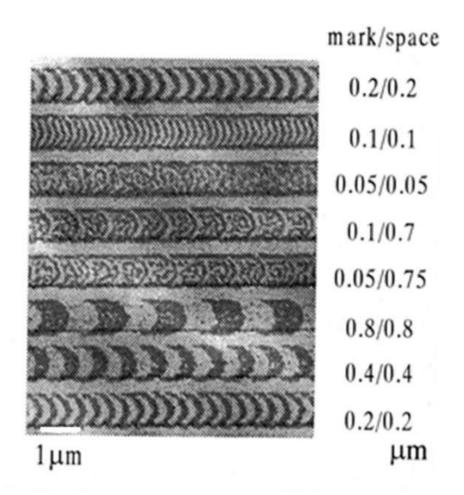


Fig.16透過型X線顕微鏡で観察した光磁気ディスクの磁区パターン

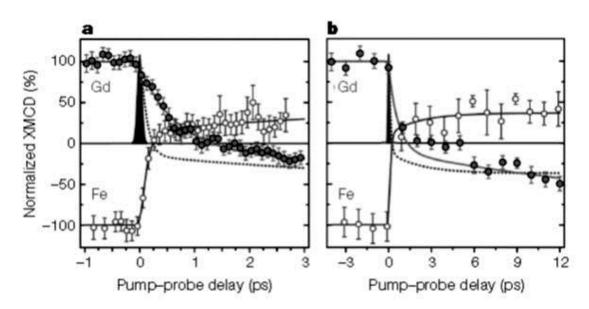


Fig. 17 XFEL を用いて測定した GdFe における原子特定磁化ダイナミクス